М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
elinaaak
elinaaak
11.03.2022 12:25 •  Алгебра

Найдите объем многогранника, вершинами которого являются точки a, b,c, a1, в1 ,с1 правильной шестиугольной призмы a,b,c,d,e,f,a1,b1,c1,,d1,e1,f1, площадь основания которой равна 12 а боковое ребро равно с решением

👇
Ответ:
V=S*h=12*5=60
4,6(46 оценок)
Открыть все ответы
Ответ:
smellofcherry
smellofcherry
11.03.2022
А начнем мы с того, что расскажем о названии: “2 * 2 = 5”. Почему 5, а не 4.В математике существует такое понятие как софизм - это умышленно ложное утверждение, которое имеет видимость правильного и ошибка искусно замаскирована. В истории развития математики софизмы играли существенную роль. Они повышению строгости
математических рассуждений. Роль софизмов в развитии математики сходна с той ролью, какую играют непреднамеренные ошибки. И.П. Павлов говорил, что и “правильно понятая ошибка - это путь к открытию”.
4,6(94 оценок)
Ответ:
monika258
monika258
11.03.2022
Натуральные числа разбиваются на два непересекающихся множества вида 2m и 2m+1, где m - натуральное.
а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным.
(2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 =
2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.

b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа.
Покажем, что число не может быть и квадратом нечётного числа:
n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n
Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом?
(n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n
Не может.

Цельная и стройная запись решения:
n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2
Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.
4,4(100 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ