Функция y = x + 4/3 является линейной, т.к. здесь х в первой степени. Эта функция в общем виде может быть представлена как y = ax + b, где a и b - любые числа ( в нашем случае a = 1, а b = 4/3).
Функция y = x (x + 2) / x может быть преобразована в линейную только при условии, что x не равен 0 (при этом условии можно правую часть выражения сократить на х и получить y = x + 2), но в т.к. функция задана общем виде, без этого ограничения, то она не является линейной. Две последние функции содержат х в отрицательной степени (степень х равна -1), они обе не являются линейными.
Находим первую производную функции:
y' = -3x²+16x
или
y' = x(-3x+16)
Приравниваем ее к нулю:
-3x²+16x = 0
x1 = 0
x2 = 16/3
Вычисляем значения функции
f(0) = 13
f(16/3) = 2399/27
ответ: fmin = 13, fmax = 2399/27
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = - 6x+16
Вычисляем:
y''(0) = 16 > 0 - значит точка x = 0 точка минимума функции.
y''(16/3) = -16 < 0 - значит точка x = 16/3 точка максимума функции.