Рассмотрим функцию . Её график представляет собой некоторую бесконечную ломаную, состоящую из частей прямых с разным углом наклона.
Даже если модули и
раскроются так, чтобы перед иксами везде был плюс (получится 8x), то угол наклона всё равно будет зависеть от того, как раскроется модуль
, то есть при x ≥ -1 8x-10x = -2x — функция убывает; при x < -1 8x+10x = 18x — функция возрастает. Так как больше 8x мы получить не можем, x = -1 — точка максимума этой функции. Значит, это уравнение (f(x) = 0) имеет хотя бы одно решение, если
ответ:
Надеюсь я правильно поняла, что надо найти сумму 4-х членов убывающей геометрической прогрессии
Сумма бесконечно убывающей прогрессии находится по формуле:
Sn=b1(1-q^n) /(1-q)
1. Найдём q
q=b4 : b3=0,16 :0,8=0,2
2. Найдём b1 из формулы: bn=b1*q^(n-1)
b3=b1*q^(3-1) Подставим в эту формулу известные нам данные: 0,8=b1*0,2^2
0,8=b1*0,04
b1=0,8 : 0,04=20
Отсюда: S4=20*(1-0,2^4)/(1-0,2)=20*(1-0,0016)/0,8=20*0,9984/0,8=19,968/0,8=24,96
ответ: S4=24,96