Пусть х км/ч скорость туриста, вышедшего из В, тогда скорость туриста, вышедшего из А х+1 км/ч. Турист вышедший из А потратил 9/(х+1) + 1/2 часов, а турист , вышедший из В, потратил 10/х. Составим и решим уравнение:
9/(х+1) + 1/2 = 10/х
переносим все в левую часть, приводим к общему знаменателю, и должно получится примерно следующее:
(х²-х-20)/(2х(х+1)) ОДЗ: х≠0, -1
решаем квадратное уравнение:
D=1+80=81=9²
корни уравнения : 5 и -4 (-4 не подходит по смыслу задачи)
Значит, скорость вышедшего из В равна 5 км/ч, тогда скорость туриста, вышедшего из А, равна 5+1 = 6км/ч
ответ: 6 км/ч
Пусть х км/ч скорость туриста, вышедшего из В, тогда скорость туриста, вышедшего из А х+1 км/ч. Турист вышедший из А потратил 9/(х+1) + 1/2 часов, а турист , вышедший из В, потратил 10/х. Составим и решим уравнение:
9/(х+1) + 1/2 = 10/х
переносим все в левую часть, приводим к общему знаменателю, и должно получится примерно следующее:
(х²-х-20)/(2х(х+1)) ОДЗ: х≠0, -1
решаем квадратное уравнение:
D=1+80=81=9²
корни уравнения : 5 и -4 (-4 не подходит по смыслу задачи)
Значит, скорость вышедшего из В равна 5 км/ч, тогда скорость туриста, вышедшего из А, равна 5+1 = 6км/ч
ответ: 6 км/ч
9(x^2+1/x^2)-18(x+1/x)=22
(x+1/x)^2=x^2+1+1/x^2
замена x+1/x=t (x^2+1/x^2)=(x+1/x)^2-1=t^2 -1
9(t^2 -1)-18t-22=0
9t^2-18t-31=0
D=324+1116=1440
t1= (18+12корень из 10)/18=(3+2корень из 10)/3
t2= (3-2корень из 10)/3
x+1/x=(3+2корень из 10)/3 x+1/x=(3-2корень из 10)/3
посмотри ты тоже до этого доходил, а то тяжко решать сразу на пк