М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
veronikarub
veronikarub
02.05.2021 07:57 •  Алгебра

Объясните что такое дискриминант квадратного корня , указать числа квадратных корней и как его находить

👇
Ответ:
Я так понимаю, вопрос про дискриминант квадратного уравнения(!), а не корня) Если говорить проще, то это такая формула, которая найти тебе решение уравнения. "Указать числа квадратных корней", не понимаю, что это значит, но, возможно, ты спрашиваешь количество корней в квадратном уравнении? Если да, то:
1) Два корня, если дискриминант больше нуля
2) Один корень, если дискриминант равен нулю
3) Ноль корней, если дискриминант меньше нуля.
Для того, чтобы узнать формулу дискриминанта рассмотрим квадратное уравнение:
a*x² + b*x + c = 0, надеюсь это ты знаешь) Так вот, формула дискриминанта:
Д = b² - 4*a*c. 
4,5(40 оценок)
Открыть все ответы
Ответ:
ппппппп25
ппппппп25
02.05.2021
Если f (строго) возрастает на отрезке [a, b], то для любых x<y из отрезка [a, b] верно, что f(x)<f(y), в частности для любых x из отрезка [a, b] выполняется f(x)<f(b). Аналогично, если f (строго) убывает на отрезке [b, c], то для любых x>y из отрезка [a, b] верно, что f(y)>f(x), в частности для любых x из отрезка [b, c] выполняется f(b)>f(x).
f(b) - наибольшее значение на отрезках [a, b] и [b, c], тогда оно наибольшее значение и на объединении отрезков.

Для минимума: если функция f убывает на отрезке [b ; c] возрастает, а на отрезке [a; b] убывает, то в точке b функция имеет минимум, причем f(b) -наименьшее значение f на отрезке [a; c].
Доказательство: Если f (строго) возрастает на отрезке [b, c], то для любых x<y из отрезка [b, c] верно, что f(y)<f(x), в частности для любых x из отрезка [a, b] выполняется f(b)<f(x). Аналогично, если f (строго) убывает на отрезке [a, b], то для любых x>y из отрезка [a, b] верно, что f (x)>f(y), в частности для любых x из отрезка [a, b] выполняется f(b)<f(x).
f(b) - наименьшее значение на отрезках [a, b] и [b, c], тогда оно наименьшее значение и на объединении отрезков.
4,7(32 оценок)
Ответ:
Alex96xelA
Alex96xelA
02.05.2021
Если f (строго) возрастает на отрезке [a, b], то для любых x<y из отрезка [a, b] верно, что f(x)<f(y), в частности для любых x из отрезка [a, b] выполняется f(x)<f(b). Аналогично, если f (строго) убывает на отрезке [b, c], то для любых x>y из отрезка [a, b] верно, что f(y)>f(x), в частности для любых x из отрезка [b, c] выполняется f(b)>f(x).
f(b) - наибольшее значение на отрезках [a, b] и [b, c], тогда оно наибольшее значение и на объединении отрезков.

Для минимума: если функция f убывает на отрезке [b ; c] возрастает, а на отрезке [a; b] убывает, то в точке b функция имеет минимум, причем f(b) -наименьшее значение f на отрезке [a; c].
Доказательство: Если f (строго) возрастает на отрезке [b, c], то для любых x<y из отрезка [b, c] верно, что f(y)<f(x), в частности для любых x из отрезка [a, b] выполняется f(b)<f(x). Аналогично, если f (строго) убывает на отрезке [a, b], то для любых x>y из отрезка [a, b] верно, что f (x)>f(y), в частности для любых x из отрезка [a, b] выполняется f(b)<f(x).
f(b) - наименьшее значение на отрезках [a, b] и [b, c], тогда оно наименьшее значение и на объединении отрезков.
4,8(85 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ