8)21*(47-13)=21*34=7*3*2*17 делители: 2,3,7,17 34*(13+12) =34*25=2*17*5*5 делители: 2,5,17 9) 8,7*(5,2+7,8) -13*1,7=8,7*13-13*1,7=13*(8,7-1,7)=13*7=91 4)0,25 x 4 x 6-1/3 x 9 x 10=1*6+3*10=6+30=36 1) a)1/6 x 1,79 - 0,35 x 1/6=1/6(1,79-0,35)=1/6*1,44=0,24 б)1,75 x 17 + 1,75 x 3=1,75(17+3)= 1,75*20=35 5) а) да б) да в) нет 6) 24 x (1/3-1/12)-35 x (1/7-1/5)= 24*1/3 -24*1/12 -35*1/7 +35*1/5 =8-2-5+7=8
2) 8,37+5,4+2,63+6,6=(8,37+2,63)+(5,4+6,6)=11+10=21 Переместительное и сочетательное 3) от -210 до 212 Сложим числа -210+210=0, -209+209=0 и т.д. Сумма всех чисел сводится к сумме чисел 211+212=423 Переместительное и сочетательное свойства 7) 0,2 x 5-1/7 x (-10) x 14=1-1/7*14*(-10=)1-2*10=1-20=-19
А) q=12/-3=-4 б) c3=c2*q=12*(-4)=-48 в) c(n)=c1*q^(n-1)=-3*(-4)^(n-1)=3/4*(-4)^n г) c6=3/4*(-4)^6=3*4^5=3*1024=3072 д) Так как для произвольного члена прогрессии c(n) не выполняется ни равенство с(n+1)>c(n), ни равенство c(n+1)<c(n), то прогрессия не является ни возрастающей, ни убывающей. e) Это прогрессия -3, -12, -48,, т.е. прогрессия c c1=-3 и знаменателем q=4 ж) Одна, указанная выше. Другие прогрессиии имеют другой знаменатель q, поэтому даже если у них с1=-3, то другие члены с нечётными номерами не будут совпадать с членами данной прогрессии.
36a^6b^12=(6(ab^2)^3)^2
или так =(6a^3b^6)^2