М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
bossobychnyy
bossobychnyy
08.03.2021 13:23 •  Алгебра

Бассейн имеет площадь 1га,в нем налито 5 млн литров воды. найти высоту.

👇
Ответ:
sover2000
sover2000
08.03.2021
1га=10 000м²
1л=0,001м³
5 000 000л=5000м³
5000/10000=5/10=1/2=0,5м- высота
4,7(54 оценок)
Открыть все ответы
Ответ:
Qwerty3111
Qwerty3111
08.03.2021

1. Сумма углов n-угольника равна 180°(n-2).

В случае 12-угольника сумма равна 1800 градусов. Т. к. он правильный, то углы его равны 1800/12=150 градусов. ответ : 150°

2. Площадь параллелограмма равна произведению его основания (a) на высоту (h):

S = a ⋅ h

144 см² = а ⋅ 16 см

a = 9 см

3.s = a * b / 2 

a - катет    b - катет 

a = 12   

b^2 = 13^2 - 12^2 

b^2 = 169 - 144

b^2 = 25

b = 5

S = 5 * 12 / 2 

S = 30

4. Площадь ромба можно найти по формуле S = 0,5d₁d₂, где d₁ и d₂ - его диагонали.

Т.к. ромб - это параллелограмм, у которого все стороны равны, то он обладает всеми свойствами параллелограмма, а именно: диагонали ромба точкой пересечения делятся пополам. Значит, полусумма диагоналей равна 28 : 2 = 14 (см).

Свойство ромба: диагонали ромба перпендикулярны. Значит, при пересечении диагоналей ромба получаются 4 прямоугольных треугольника, у которых катеты - половины диагоналей, а гипотенуза - сторона ромба.

Рассмотрим один из прямоугольных треугольников и, применив теорему Пифагора, найдем его катеты.

Пусть один из катетов х см, тогда второй будет равен (14 - х) см. Т.к. сторона ромба равна 10 см, то составим и решим уравнение:

х² + (14 - х)² = 10²,

х² + 196 - 28х + х² - 100 = 0,

2х² - 28х + 96 = 0,

х² - 14х + 48 = 0.

D = (-14)² - 4 · 1 · 48 = 196 - 192 = 4; √4 = 2

х₁ = (14 + 2)/(2 · 1) = 16/2 = 8, х₂ = (14 - 2)/(2 · 1) = 12/2 = 6

Если один из катетов равен 8 см, то второй будет равен 14 - 8 = 6 (см). Тогда диагонали ромба будут равны 16 см и 12 см, а площадь

S = 0,5 · 16 · 12 = 96 (см²)

Если один из катетов равен 6 см, то второй будет равен 14 - 6 = 8 (см). Тогда диагонали ромба будут равны 12 см и 16 см, а площадь

S = 0,5 · 12 · 16 = 96 (см²)

ответ: 96 см².

5.Обозначим трапецию АВСД. угол С=угол Д=90 градусов. так как в трапецию можно вписать окружность, то суммы противоположных сторон равны ВС+АД=СД+АВ.

проведём высоту ВК. Она разделила трапецию на прямоугольник ДСВК и прямоугольный треугольник АВК. Так как острый уголА = 45 градусов, то второй острый угол АВК = 90-45=45 градусов, значит треугольник равнобедренный, ВК=АК.

Пусть АК=х тогда и ВК=х, по т. Пифагора х²+х²=(12√2)², 2х²=144·2, х²=144, х=12, АК=12 см, ВК=12 см, тогда и СД=12 см.S(ABCD)=1/2·(АД+ВС)·ВК=1/2·(12+12√2)·12=72·(1+√2)

4,4(81 оценок)
Ответ:
miladatulush26
miladatulush26
08.03.2021

17

Объяснение:

Попробуем угадать исходную функцию. Рассмотрим слагаемое 21x. Пусть в исходной функции перед x стоял коэффициент C₁. Тогда 2C₁x - (-C₁x) = 3C₁x = 21x ⇒ C₁ = 7. Рассмотрим модули. Заметим, что |-x + a - 5| = |x - a + 5|. Пусть в исходной функции содержалось выражение C₂|x + a - 5| + C₃|x - a + 5|. Тогда для полученных коэффициентов составим систему:

\displaystyle \left \{ {{2C_2-C_3=11} \atop {2C_3-C_2=-19}} \right. \left \{ {{C_3=2C_2-11} \atop {2(2C_2-11)-C_2=-19}} \right. \left \{ {{C_3=-9} \atop {C_2=1}} \right.

Свободный член не зависит от x, поэтому если в исходной функции было выражение C₄(-8a + 28), то в выражении оно равно 2C₄(-8a + 28) - C₄(-8a + 28) = C₄(-8a + 28) = -8a + 28 ⇒ C₄ = 1.

Значит, f(x)=7x+|x+a-5|-9|x-a+5|-8a+28. График данной функции — некоторая ломаная. Заметим, что характер возрастания и убывания определяет то, как раскроется модуль |x - a + 5|. Даже если другой модуль раскроется с плюсом, то коэффициент перед x при x ≥ a - 5 равен 7 + 1 - 9 = -1 < 0, то есть при x ≥ a - 5 функция убывает. Аналогично если первый модуль раскроется с минусом, при x < a - 5 коэффициент перед x равен 7 - 1 + 9 = 15 > 0, то есть при x < a - 5 функция возрастает. Значит, x = a - 5 — точка максимума функции. Если в ней значение функции неположительно, то и для всех остальных x требуемое неравенство выполняется.

f(a-5)=7(a-5)+|a-5+a-5|-9|a-5-a+5|-8a+28=\\=2|a-5|-a-7\leq 0\\2|a-5|\leq a+7\Rightarrow a\geq -7\\\displaystyle \left \{ {{4(a-5)^2\leq (a+7)^2} \atop {a\geq -7}} \right. \left \{ {{(2a-10-a-7)(2a-10+a+7)\leq 0} \atop {x=2}} \right. \\\left \{ {{(a-17)(3a-3)\leq 0} \atop {a\geq -7}} \right. \left \{ {{1\leq a\leq 17} \atop {a\geq -7}} \right. \Rightarrow 1\leq a\leq 17

Наибольшее значение параметра — 17.


Найдите наибольшее значение параметра а при котором неравенство f(x)<=0 справедливо для любого де
4,7(41 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ