М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dadamuhamedovag
dadamuhamedovag
18.08.2022 12:30 •  Алгебра

Кто ! х^5+х^3=х^4 решите уравнение

👇
Ответ:
marinakoch
marinakoch
18.08.2022
X^5 - x^4 + x^3 = 0
x^3 * (x^2 - x + 1) = 0
x = 0
x^2 - x + 1 = 0
D = 1-4*1*1 < 0
больше действительных корней нет)))
4,6(84 оценок)
Ответ:
раптраир
раптраир
18.08.2022
Х^5+х³=х^4 
Переносим x^4 в левую часть с противоположным знаком
x^5+x³-x^4=0
Выносим x³ за скобку
x³(x²+1-x)=0
x³=0 или x²-x+1=0
x=0          D=1-4=-3<0, корней нет

ответ: 0
4,4(93 оценок)
Открыть все ответы
Ответ:
Irinaytsn
Irinaytsn
18.08.2022

520 в первом, 572 во втором, 440 в третьем

Объяснение:

Пусть x орехов в первом ящике. Во втором ящике на 10% орехов больше, чем в первом, значит количество орехов в нем равно: x + 0,1x = 1,1x В третьем ящике на 80 орехов меньше, чем в первом, и равно: x – 80 При этом во втором ящике на 30% больше, чем в третьем. Составляем уравнение и решаем его: 1,1x = x – 80 + 0,3 ∙ (x – 80) 1,1x = x – 80 + 0,3x – 24 1,1x – x – 0,3x = –80 – 24 –0,2x = –104 x = 520 орехов в первом ящике Тогда во втором ящике: 1,1 ∙ 520 = 572 орехов

4,4(80 оценок)
Ответ:
vovakornev2002
vovakornev2002
18.08.2022
Левая часть неравенства должна существовать, поэтому 
a + x >= 0,
a - x >= 0

Переписываем систему в виде
-a <= x <= a,
|x| <= a
откуда видно, что a >= 0.
Можно сразу записать, что если a < 0, то решений нет.

Тогда обе части исходного неравенства неотрицательные, и можно возводить в квадрат.
a + x + 2sqrt(a^2 - x^2) + a - x > a^2
sqrt(a^2 - x^2) > a(a - 2)/2

Если правая часть отрицательна, то решение неравенства - все значения, при которых корень существует.
a(a - 2)/2 < 0 при 0 < a < 2, так что еще одна часть ответа такова: если 0 < a < 2, то -a <= x <= a.

Осталось рассмотреть случай, когда a(a - 2) >= 0. Тогда вновь можно возводить неравенство в квадрат.
a^2 - x^2 > (a^4 - 4a^3 + 4a^2)/4
x^2 < a^3 (4 - a)/4.

У этого неравенства есть шанс иметь решения, если правая часть строго положительна, поэтому предпоследняя часть ответа: если a = 0 или a >= 4, решений нет. Осталось рассмотреть последний случай 2 <= a < 4.

Заметим, что при таких a правая часть меньше a^2, ведь 
a^3 (4 - a) / 4 / a^2 = a (4 - a) / 4 < 2 * (4 - 2) / 4 = 1 (известно, что квадратичная парабола a (4 - a) / 4 достигает максимального значения в вершине), поэтому все корни существуют, и последняя часть ответа: если 2 <= a < 4, то -sqrt(a^3 (4 - a))/2 < x < sqrt(a^3 (4 - a))/2.

Собираем всё в одно и получаем ответ.
ответ. Если 0 < a < 2, то -a <= x <= a; если 2 <= a < 4, то -sqrt(a^3 (4 - a))/2 < x < sqrt(a^3 (4 - a))/2, для остальных a решений нет.
4,8(64 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ