600 м за минуту означает, что за 1 час велосипедист проедет на 600*60 = 36000 м = 36 км меньше, т. е скорость мотоциклиста на 36 км/ч больше, чем велосипедиста. пусть скорость велосипедиста х км/ч, тогда скорость мотоциклиста х+ 36 км/ч, расстояние 120 км велосипедист проедет за 120/х часов, а мотоциклист за 120/(х +36) часов, составим уравнение
120/х - 120/(х +36) = 3, сократим левую и правую часть на 3, 40/х -40/(х +36) =1, 40*(х +36) - 40х = х(х +36), х^2 + 36x -40*36 = 0, d = 36^2 +4*1*1440 = 7056, x1 =( - 36 +84)/2 = 24, x2 =( -36 - 84)/2 = -60 - не подходит (отр)
скорость велосипедиста 24 км/ч, скорость мотоциклиста х +36 =24 +36 =60 км/ч
нельзя.
сумма трех натуральных чисел не меньше трёх, чтобы она была простым числом, она должна быть как минимум нечетной - все простые числа, большие двух, нечетные.
рассмотрим суммы соседних троек: a + b + c, b + c + d. так как обе суммы нечётны, то a и d должны быть одинаковой чётности (дальше я это буду записывать в виде a = d). значит, все числа, между которыми стоят два каких-то числа, должны быть одинаковой чётности.
1-е число = 4-е = 7-е = = 100-е = 3-е = 6-е = 9-е = = 99-е = 2-е = 5-е = 8-е = = 98-е = 1-е (например, между 100-м и 3-м числами стоят два числа: первое и второе).
итак, получилось, что все сто чисел должны быть одинаковой чётности. для последовательных натуральных чисел от 1 до 100 это, разумеется, неверно, поэтому их расставить по кругу так, чтобы сумма любых трёх подряд идущих чисел была простым числом, не получится.
2. (Вспоминаем физику время движения равно пройденное расстояние делить на время),
тогда 6/х (ч) - время подъема, 5/(х+2) (ч)- время спуска.
Известно, что всего на свои передвижения (время спуска+время подъема) улитка затратила 14 часов. Составим и решим уравнение:
6/х + 5/(х+2)=14 (переносим 14 в другую часть уравнения и приведем к общему знаменателю)
6/х + 5/(х+2) - 14=0 (общий знаменатель х*(х+2))
(6*(х+2) +5*х - 14*х*(х+2))/(х*(х+2))=0 ( далее вспоминаем равенство 0 дроби, это когда числитель равен 0,а знаменатель от нуля отличен, далее я буду рассматривать только числитель для простоты, а знаменатель писать не буду, он равен нулю, если х=0 или =-2, так что если получатся такие корни, мы их исключим)
3.Уравнение 6х+12 +5х-14х²-28х=0
-14х² -17х+12=0 (умножим на -1, чтобы перед х² стоял положительный коэффициент)
14х² +17х-12=0,
а =14, b=17, c=-12
Определяем дискриминант D=b²-4*a*c=17²-4*14*(-12)=289+672=961, определяем корни x1=(-b+√D)/2a=(-17+31)/28=0,5
x2=(-b-√D)/2a=(-17-31)/28=-48/28=-12/7
Но данный корень х2=-12/7 не подходит во физическому смыслу задачи (скорость не может быть отрицательной)
Тогда нам подходит только х=0,5 - скорость при подъеме, тогда 0,5+2=2,5 м/ч - скорость при спуске,
тогда 6/0,5=12 часов - время подъема
5/2,5=2 часа - время спуска