Запишем матрицу в виде:
1 2 -2
-2 -1 1
1 -2 1
Главный определитель
∆=1*((-1)*1 - (-2)*1) - (-2)*(2*1 - (-2)*(-2)) + 1*(2*1 - (-1)*(-2)) = -3
Определитель отличен от нуля, следовательно, матрица является невырожденной и для нее можно найти обратную матрицу A-1.
Обратная матрица будет иметь следующий вид:
A11 A21 A31
A12 A22 A32
A13 A23 A33
где Aij - алгебраические дополнения.
Транспонированная матрица.
AT=
1 -2 1
2 -1 -2
-2 1 1
Найдем алгебраические дополнения матрицы AT.
A1,1 = (-1)1+1
-1 -2
1 1
∆1,1 = ((-1)*1 - 1*(-2)) = 1
A1,2 = (-1)1+2
2 -2
-2 1
∆1,2 = -(2*1 - (-2)*(-2)) = 2
A1,3 = (-1)1+3
2 -1
-2 1
∆1,3 = (2*1 - (-2)*(-1)) = 0
A2,1 = (-1)2+1
-2 1
1 1
∆2,1 = -((-2)*1 - 1*1) = 3
A2,2 = (-1)2+2
1 1
-2 1
∆2,2 = (1*1 - (-2)*1) = 3
A2,3 = (-1)2+3
1 -2
-2 1
∆2,3 = -(1*1 - (-2)*(-2)) = 3
A3,1 = (-1)3+1
-2 1
-1 -2
∆3,1 = ((-2)*(-2) - (-1)*1) = 5
A3,2 = (-1)3+2
1 1
2 -2
∆3,2 = -(1*(-2) - 2*1) = 4
A3,3 = (-1)3+3
1 -2
2 -1
∆3,3 = (1*(-1) - 2*(-2)) = 3
Обратная матрица:
1 2 0
=1/-3 3 3 3
5 4 3
A-1=
-1/3 -2/3 0
-1 -1 -1
-5/3 -4/3 -1.
Проверим правильность нахождения обратной матрицы путем умножения исходной матрицы на обратную. Должны получить единичную матрицу E.
E=A*A-1=
1 2 -2
-2 -1 1
1 -2 1
1 2 0
1/-3 3 3 3
5 4 3
E=A*A-1=
1*1+2*3+(-2)*5 1*2+2*3+(-2)*4 1*0+2*3+(-2)*3
(-2)*1+(-1)*3+1*5 (-2)*2+(-1)*3+1*4 (-2)*0+(-1)*3+1*3
1*1+(-2)*3+1*5 1*2+(-2)*3+1*4 1*0+(-2)*3+1*3 =
-3 0 0
= 1/-3 0 -3 0
0 0 -3
A*A-1=
1 0 0
0 1 0
0 0 1.
Решение верно.
а) b = 18 б) b = 10 в) y=20 г) y = 1,2
д) a = 9 е) a = 24 ж) x = 1,4 з) x = 0,6
Объяснение:
Основное свойство пропорции: произведение крайних членов пропорции равно произведению средних членов пропорции.
a : b = c : d ⇒ ad = bc
а) 2 : 9 = 4 : b; 2b = 9*4; 2b = 36; b = 36 : 2; b = 18;
б) 15 : b = 3 : 2; 15*2 = b*3; 30 = 3b; b = 30 : 3; b = 10;
в) 3 : 2,1 = y : 14; 3 * 14 = 2,1y; 42 = 2,1y; y = 42 : 2,1; y = 20;
г) y : 2,4 = 3 : 6; 6y = 2,4*3; 6y = 7,2; y = 7,2 :6; y = 1,2;
д)
е)
ж)
з)
6-х/3=х/7
Приведём левую и правую часть уравнения к общему знаменателю: 3*7=21
21*6 - 7*х= 3*х
126-7х=3х
-7х-3х=-126
-10х=-126
х= -126 : -10 =12,6
ответ: х=12,6