(x³ + 1)/(x + 1) + 3/(x² - x + 1) ≤ 4
одз x≠-1
да и сократим первyю дробь
(x² - x + 1) + 3/(x² - x + 1) ≤ 4
(x² - x + 1) всегда положителен D<0 и коэффициент при х^2 больше 0
приводим к общему знаменателю и отбрасываем его(он всегда положителен)
(x² - x + 1)² - 4(x² - x + 1) + 3 ≤ 0
D = 16 - 12 = 4
(x² - x + 1)₁₂ = (4 +- 2)/2 = 1 3
(x² - x + 1 - 1)(x² - x + 1 - 3) ≤ 0
(x² - x)(x² - x - 2) ≤ 0
вторая скобка D=1+8 = 9 x12=(1+-3)/2 = 2 -1 x² - x - 2 = (x - 2)(x + 1)
x(x-1)(x-2)(x+1) ≤ 0
применяем метод интервалов
[-1] [0] [1] [2]
x ∈ [-1,0] U [1,2]
вспоминаем одз х≠-1
ответ x ∈ (-1,0] U [1,2]
3мл - 100%
х - 15%
х=3*15/100=0,45 мл - кислоты в 1 растворе
7 мл - 100%
х - 2%
х=2*7/100=0,14 мл - кислоты во 2 растворе
3+7=10 мл - объем полученного раствора
0,45+0,14=0,59 мл - кислоты всего в полученном растворе
10-100%
0,59-х%
х=0,59*100/10=5,9%