Для начала вспомним т. Виетта
для уравнения вида x²+px+q=0
выпоняется : x₁+x₂= -p; x₁*x₂=q
теперь решение:
1) x²-13x+q=0
x₁=12.5
x₁+x₂= -(-13)=13
12.5+x₂=13
x₂=0.5
x₁*x₂=12.5*0.5=6.25= q
тогда уравнение будет x²-13x+6.25=0
2) 10x²-33x+c=0
приведем его к стандартному виду
x²-(33/10)x+(c/10)=0
x²-3.3x+(c/10)=0
x₁=5.3 тогда 5.3+x₂=3.3; отсюда x₂= -2
c/10=5.3*(-2)=-10.6; Значит с= -106
Уравнение будет иметь вид 10x²-33x-106=0
3) x²+2x+q=0
x₁²-x₂²=12
(x₁-x₂)(x₁+x₂)=12
(x₁-x₂)*(-2)=12
x₁-x₂= -6
x₁=x₂-6
Теперь найдем корни
x₁+x₂=x₂-6+x₂=-2
2x₂=4
x₂=2; x₁= -4
тогда q=2*(-4)= -8
Уравнение примет вид x²+2x-8=0
его корни x₁²-x₂²=(-4)²-(2)²=16-4= 12
1) Логарифм определен на положительной полуоси, на ней х не равен нулю, так что со знаменателем все ок. Потому функция определена на положительной полуоси (0,+беск)
2) Фцнкция не определена на отрицателных значениях, потому она не может быть четной или нечетной.
3)С Оу не пересекается, т.к не определена в точке х=0. С Ох точка пересечения - решение уравнения
это уравнение не имеет решений в элементарных функциях, это далеко за рамками школьной программы. Если устроит - решение этого уравнения - так называемая константа Омега.
4) Функция непрерывна на (0,+беск) как сумма константы и частного двух непрерывных функций
5)---
6)Асимптоты 2, видно из самого графика. Одна - у=1, так как функция стркмится к 1 при х стремящемуся к бесконечности. Вторая - х=0, так как функция стрмится к минус бесконечности при х стремящимуся к нулю. Возможно, в вашем курсе вторая асимптота не рассматривается, так как асимптота х=0 не есть функция.
7,8) Так как
То х=е - точка экстремума. Уже говорилось, что функция стремится к 1 при х стремящемуся к бесконечности и к -беск при х стрмящемуся к нулю. Так как в точке е функция больше 1, то это точка локального (и глобального) максимума.
Функция растет на (0,е) и падает на (е, +беск)
9)
Для иксов меньше найенного значения вторая производная отрицательна, следовательно функция выпукла. Для иксов больше - чсе наоборот, следтвательно, функция вогнута