М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Adhsvvkdjs
Adhsvvkdjs
14.07.2022 05:25 •  Алгебра

Проходит ли график функцииy=-x=3 через точку b(10; -7)

👇
Ответ:
mario160
mario160
14.07.2022
У тебя в задании непонятно "+3" или "-3".

Делаю для обоих случаев, а ты уж выбери то, что тебе нужно.

 

1)y=-x-3 

Подставляем координаты точки B(10;-7)в нашу функцию:

-7=-10-3

-7 =-13 равенство неверно. Вывод- график не проходит через точку В

 

2)у=-х+3

  -7=-10+3

  -7=-7 равенство верно. Вывод-график  проходит через точку В

 

4,4(80 оценок)
Ответ:
maksimiksanov
maksimiksanov
14.07.2022

y=-x+3

B(10; -7)

y(10) = -x+ 7 = -10 + 3 = -7

y(10) = -7

 

ответ: да, проходит

 

4,4(88 оценок)
Открыть все ответы
Ответ:
Inosya
Inosya
14.07.2022
У меня получилось так:
х+z/2=1
x-z=3

выражаем х через z,получилось:
3+z+0,5z=1 (1)                                     (1)3+z+0,5z=1
x=3+z                                                        3+1,5z=1
                                                                   1,5z=-2
                                                                   z=-2/1,5 
                                                                   z=-1,3
получили систему
x=3-1,3
z=-1,3

ответ:х=1,7 и z=-1,3.
Но лучше спроси у одноклассников.
4,7(83 оценок)
Ответ:
lidiyaerox28
lidiyaerox28
14.07.2022

ответ:Допустим, у нас есть бесконечно малые при одном и том же {\displaystyle x\to a} x\to a величины {\displaystyle \alpha (x)} \alpha(x) и {\displaystyle \beta (x)} \beta(x) (либо, что не важно для определения, бесконечно малые последовательности).

Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=0} \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha }}=0, то {\displaystyle \beta } \beta — бесконечно малая высшего порядка малости, чем {\displaystyle \alpha } \alpha . Обозначают {\displaystyle \beta =o(\alpha )} \beta =o(\alpha ) или {\displaystyle \beta \prec \alpha } \beta\prec\alpha.

Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=\infty } \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha }}=\infty , то {\displaystyle \beta } \beta — бесконечно малая низшего порядка малости, чем {\displaystyle \alpha } \alpha . Соответственно {\displaystyle \alpha =o(\beta )} \alpha =o(\beta ) или {\displaystyle \alpha \prec \beta } \alpha\prec\beta.

Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=c} \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha }}=c (предел конечен и не равен 0), то {\displaystyle \alpha } \alpha и {\displaystyle \beta } \beta являются бесконечно малыми величинами одного порядка малости. Это обозначается как {\displaystyle \alpha \asymp \beta } \alpha\asymp\beta или как одновременное выполнение отношений {\displaystyle \beta =O(\alpha )} \beta =O(\alpha ) и {\displaystyle \alpha =O(\beta )} \alpha =O(\beta ). Следует заметить, что в некоторых источниках можно встретить обозначение, когда одинаковость порядков записывают в виде только одного отношения «о большое», что является вольным использованием данного символа.

Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha ^{m}}}=c} \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha ^{m}}}=c (предел конечен и не равен 0), то бесконечно малая величина {\displaystyle \beta } \beta имеет {\displaystyle m} m-й порядок малости относительно бесконечно малой {\displaystyle \alpha } \alpha .

Для вычисления подобных пределов удобно использовать правило Лопиталя.

4,4(37 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ