Порассуждаем.
Площадь ромба - это половина произведения его диагоналей. Произведение диагоналей вдвое больше: 96*2 = 192.
Диагонали ромба разбивают его площадь на 4 равных прямоугольных треугольника. Возьмём один такой треугольник. Сторона ромба - гипотенуза такого треугольника (стороны ромба равны). Значит, произведение катетов (катеты - половины диагоналей, так как в ромбе точкой пересечения диагонали разбиваются пополам) этого треугольника в 4 раза меньше произведения диагоналей: 192:4 = 48.
По условию, одна диагональ (а значит, и один из катетов нашего треугольника) в 3 раза больше другой. Значит, половина меньшей диагонали равна √48:3 = 4 см, а половина большей - 4*3 = 12 см.
Итак, у нас есть прямоугольный треугольник с катетами 4 см и 12 см, нужно найти его гипотенузу (напомним себе, что искомая гипотенуза есть сторона ромба). Воспользуемся теоремой Пифагора: 4² + 12² = 160, гипотенуза равна квадратному корню из суммы квадратов катетов: √160 = 4√10.
Таким образом, сторона ромба равна 4√10. Ромб - параллелограмм с равными сторонами, следовательно, все стороны ромба равны друг другу и составляют длину в 4√10 см.
ответ: 4√10 см.
Пусть за год выпуск увеличивался на x %. Приняв исходный объём выпуска продукции за 1, получим, что через год выпуск продукции составил
α =1*(1 +x/100 ), а через два года: α²=( 1+х/100)².
Отсюда α² =1*2,25=2,25 , то есть α = 1,5
1+х/100=1,5
х/100=0,5
х=50%