М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
konor271
konor271
24.04.2022 14:14 •  Алгебра

Числитель обыкновенной дроби на 7 больше знаменателя.если к числителю прибавить 7, а к знаменателю 3, то данная дробь увеличивается на 37/88.найдите первоначальную дробь.

👇
Ответ:
Katyamaier777
Katyamaier777
24.04.2022
Руслан, прибавлять надо 3, никакого минуса там нет.
Уравнение:
(В+14)/(В+3)=(В+7)/В+37/88
Проблема в том, что оно не решается в целых числах.
Если домножить на 88*B*(B+3), то получится
88*B*(B+14) = 88(B+3)(B+7) + 37*B*(B+3)
88*B^2 + 88*14*B = 88(B^2 + 10B + 21) + 37*B^2 + 37*3*B
88*B^2 + 88*14*B = 88*B^2 + 88*10*B + 21*88 + 37*B^2 + 111*B
Вычитаем 88*B^2 слева и справа и умножаем числа
1232*B = 37*B^2 + 880*B + 111*B + 1848
37*B^2 - 241*B + 1848 = 0
А теперь находим дискриминант
D = 241^2 - 4*37*1848 = 58081 - 273504 = -215423 < 0
Решений нет.
Но даже если мы что-то напутали, и D = +215423, или
D = 58081 + 273504 = 331585
Все равно это не квадрат целого числа, и B иррационально.
4,8(62 оценок)
Ответ:
ася766
ася766
24.04.2022
Дробь А/В. А=В+7, А теперь опять непонятно: к знаменателю прибавить -3 или 3? Соответственно, В-3 или В+3 ? (А+7)/(В-3)=А/В+37/88 (В+14)/(В-3)=(В+7)/В+37/88 ? или (А+7)/(В+3)=А/В+37/88 (В+14)/(В-3)=(В+7)/В+37/88 ?
4,8(87 оценок)
Открыть все ответы
Ответ:
sotskova20041
sotskova20041
24.04.2022

задание 9

пусть ширина х,тогда длина х+0,25х составим уравнение

х+х+0,25х=54:2

2,25х= 27

х=27:2,25

х=12 см ширина

12+12*0,25=12+3=15 см длина

12*15= 180 кв см площадь

 

задание 10

1)сумма восьми чисел 5,2*8= 41,6

пусть искомое число х,составим уравнение

41,6+х=5,7*9

41,6+х=51,3

х=51,3-41,6

х= 9,7 искомое число

 

задание 5 ответ: х= - 0,5

 

задание 4 ответ: вариант 2 

задание 8

/4х/=5,6

решение разбивается на отдельные случаи

случай 1

4х=5.6

х=5,6:4

х= 1,4

случай 2

- 4х=5,6

х=5,6:(-4)

х= - 1,4 

ответ х=1,4;х=-1,4 

 

 

4,7(94 оценок)
Ответ:
bulatdikhin
bulatdikhin
24.04.2022

1)Определение. Первообразной для функции f называется такая функция F, производная которой равна данной функции.

2)Если F1 и F2 – две первообразные для одной и той же функции f, то они отличаются на постоянное слагаемое. ... Функция, производная которой тождественно равна нулю, является постоянной. Итак, F1 – F2 = С. Таким образом, все первообразные для функции f получаются из одной из них прибавлением к ней произвольной постоянной.

3)совокупность первообразных функции и называется непределенным интегралом от функции . Совокупность всех первообразных функции называется неопределенным интегралом от и обозначается символическим выражением , которое читается "интеграл от эф от икс по дэ икс".

4) Знак интеграла (∫) используется для обозначения интеграла в математике.

5)Множество всех первообразных F(x)+C функции f(x) называется неопределенным интегралом функции f(x) и обозначается . Символ называется интегралом, f(x) называется подынтегральной функцией, f(x)dx называется подынтегральным выражением, x называется переменной интегрирования.

6)Подынтегральное выражение представляет собой дифференциал функции f(x). Действие нахождения неизвестной функции по заданному ее дифференциалу называется неопределенным интегрированием, потому что результатом интегрирования является не одна функция F(x), а множество ее первообразных F(x)+C.

7)Если – одна из первообразных некоторой функции , то совокупность всех первообразных этой функции можно представить в виде , где C – произвольная постоянная. Функция, имеющая первообразную в некотором промежутке, называется интегрируемой, а процедуру нахождения первообразной называют интегрированием этой функции.

8)Неопределенный интеграл его свойства. ... Множество всех первообразных некоторой функции f(x) называется неопределенным интегралом функции f(x) и обозначается как ∫f(x)dx. Таким образом, если F - некоторая частная первообразная, то справедливо выражение ∫f(x)dx=F(x)+C, где C - произвольная постоянная.

9)Метод интегрирования, при котором интеграл с тождественных преобразований подынтегральной функции и применения свойств интеграла приводится к одному или нескольким табличным интегралам, называется непосредственным интегрированием.

10)Геометрически определённый интеграл выражает площадь «криволинейной трапеции», ограниченной графиком функции[⇨].

11)Формула Ньютона-Лейбница - даёт соотношение между операциями взятия определенного интеграла и вычисления первообразной. Формула Ньютона-Лейбница - основная формула интегрального исчисления. Данная формула верна для любой функции f(x), непрерывной на отрезке [а, b], F - первообразная для f(x).

12)Криволинейная трапеция – плоская фигура, ограниченная графиком неотрицательной непрерывной функции у = f(x), определенной на отрезке [a; b], осью абсцисс и прямыми х = а, х = b – см. рис.

4,4(98 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ