М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
osharapa
osharapa
25.10.2020 10:05 •  Алгебра

1. выражение : 12x-3xy-2(x-3xy) 2. решите уравнение : 10x-5=6(8x+3)-5x 3. вынесите общий множитель за скобки : a) 8xa+4xb ; б) 18 x^3y + 12y^2y 4. решите уравнение : 2x^2 -x =0 6. выражение : 3x(x+y+c) -3y (x-y-c) -3c (x+y-c)

👇
Ответ:
Вандализм
Вандализм
25.10.2020
1) 12x-3xy-2(x-3xy)=12x-3xy-2x+6xy=10x+3xy
2)10x-5=6(8x+3)-5x
10x-5=48x+18-5x
10x-5=43x+18
43x-10x=-5-18
33x=-23
x=-23/33

3) a)8xa+4xb=4x(2a+b)

4)2x^2-x=0
x(2x-1)=0
x=0
2x-1=0
2x=1
x=0,5
ответ :0;0,5

6) 3x(x+y+c)-3y(x-y-c)-3c(x+y-c)=3x^2+3xy+3xc-3xy+3y^2+3cy-3xc-3cy+3c^2=3x^2+3y^2+3c^2
4,5(95 оценок)
Открыть все ответы
Ответ:
khadija7
khadija7
25.10.2020
№1. Делаю только «а», «б» делаете по аналогии.
а) Предположим, что графики функций y = x^2 и y = 4. Чтобы найти координату x точек пересечения приравняем две функции (они пересекаются, значит приравниваем). Получаем:
x^2 = 4 \\ 
x = \pm 2
y можем найти подставив x в выражение первой функции y = x^2, а можно сделать проще. Так как пересечение будет с прямой y = 4, то и точки пересечения будут иметь координату y = 4. Итак, получилось две точки пересечения с координатами: (2;4),(-2;4).
Покажем теперь то же на графике. Смотрите рисунок, приложенный к ответу.
№2.
а) Дан отрезок [0;1] (этот отрезок по оси x), найдем значения y на концах этого отрезка:
y_0 = f(0) = 0^2 = 0 \\ 
y_1 = f(1) = 1^2 = 1
Имеем, что первое — наименьшее значение функции на заданном отрезке, а второе — наибольшее.
б) Делаем ту же работу:
y_{(-3)} = f(-3) = (-3)^2 = 9 \\ 
y_0 = f(0) = 0^2 = 0
Видим, что первое — наибольшее значение функции на заданном промежутке, а второе — наименьшее.

№1. найдите точки пересечения прямой и параболы: а) y=x^2(x в квадрате) и y=4 б) y= -x^2(x в квадрат
4,7(70 оценок)
Ответ:
Miliafert
Miliafert
25.10.2020
Уравнение касательной  функции  в точке  с  абсциссом x₁  (x₁∈) имеет вид:
y - f(x₁) =f ' (x₁)(x -x₁) ; 
f ' (x) =( -x² -7x +8) ' = (-x²) ' - (7x) ' +8 ' 
= -(x²) ' - 7(x) ' +0 = -2x  - 7 ;
f ' (x₁) = -2x₁ -7 ;
f ' (x₁) = -(2x₁ +7); 
k₁ = f ' (x₁) = - (2x₁ +7); 

   Уравнение касательной (прямая линия) ищем в виде
y =kx +b ;
проходит через точку  B(1;1) , поэтому :
1 =k*1 + b;
y -1 = k(x-1); 
k = k₁ ;
y - 1 = -(2x₁+ )(x -1) ;
y  = 1 - (2x₁+ 7)(x -1) ;
 { y = - x²₁ -7x₁ + 8 ; y = 1 - (2x₁+7)(x₁ -1) .  x₁ =0  ; x ₁ =2 ;
a)  y =1 -(2*0 +7)(x -1) ;
y = - 7x+ 8;
b) y = 1 - (2*2+7)(x-1);
y= - 11x +12 .
4,5(61 оценок)
Это интересно:
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ