нули функции это те значения аргумента функиии х, при которых ззначение функции y равно 0.
т.е. нужно найти х для которых ax^2+c=0 т.е. решить уравнение
ax^2+c=0
ax^2=-c
при а=0 и с=0 уравнение имеет вид
0x^2=0 и уравнение имеет бесконечно много нулей (функция имеет вид y=0)
если а=0 и с не равно 0 тогда решений нет (у функции нет нулей)
если а не равно 0, тогда перепишем уравнение в виде
x^2=-c/a которое имеет решение при условии -c/a>=0
т.е. при (a>0, c<=0 или a<0, c>=0)
итого данная функция имеет нули при a>0, c<=0
или a<0, c>=0
или а=с=0
пусть f(x) и g(x) - две нечетные функции, D - общая область определения
тогда на области D справедливы равенства
f(-x)=-f(x);g(-x)=-g(x) (определение нечетной функции)
заметим что если точка х0 попадает в область D, то и точка -х0 попадает в єту область в силу нечетности функций f(x) и g(x)
таким образом область D определена симметрично относительно начала координат
далее
для любого х є D: f(-x)*g(-x)=-f(x)*(-g(x))=f(x)g(x), т.е что по определению четной функции означает, что произведение двух нечетных функций является четной функцией на общей области их определения. Доказано