1) В принадлежит, если подставишь в y=-3xвместо х абсциссу точки В, а вместо у ординату точки В.
2) ответ номер 3, у=9, так как он параллелен оси х 3)5х+3·0 -15=0 5х-15=0 5х=15 х=3 точка А(3;0) -точка пересечения графика с осью ох. 4)6x-7y+12=0 вместо у подставляем нуль и считаем, 6х-7·0 +12=0 6х=-12 х=-2 это и есть абсцисса В(-2;0) -точка пересечения графика с осью ох.
Пусть скорость второго лыжника будет х км/ч, тогда скорость первого лыжника, будет х-2 км/ч (т.к. его скорость была на 2 км/ч меньше, чем у второго). Время, за которое первый лыжник преодолел расстояние в 40 км будет: 40/(х-2)=t Второй лыжник потратил столько же времени, сколько и первый, только преодолел 48 км, его время будет: 48/х=t
Т.к. время первого и второго лыжников равны, получаем уравнение: t=40/(х-2)=48/х
Решаем это уравнение относительно х: 40 = 48 х-2 х
40*х=48*(х-2) 40х=48х-48*2 40х=48х-96 48х-40х=96 8х=96 х=96:8 х=12 км/ч - скорость второго лыжника.
Скорость первого лыжника на 2 км/ч меньше, чем у второго, т.е.: 12-2=10 км/ч - скорость первого лыжника.
обозн. cosx=t, |t|<=1
t2-t-2=0
d=(-1)^2-4*1*(-2)=1+8=9
t1=1-3/2 t2=1+3/2
t1=-1 t2=2
t2>1
cosx=-1
x=pi+2pi*n
2.2cos^2x-sin4x=1
2(1-sin^2x)-2sin2xcos2x=1
2-2sin^2x-2(2sinxcosx*(cos^2x-sin^2x)=1
2-2sin^2x-4sinxcosx(cos^2x-sin^2x)-1=0
(1-2sin^2x)-4sinxcosx(1-sin^2x-sin^2x)=0
(1-sin^2x)-4sinxcosx(1-2sin^2x)=0
(1-sin^2x)(1-4sinxcosx)=0
1-sin^2x=0 или 1-4sinxcosx=0
sin^2x=1/2 1-2sin2x=0
x=(-1)^n*arcsin(1/2)+pi*n sin2x=1/2
x=(-1)^n*pi/6+pi*n 2x=(-1)^n*arcsin(1/2)+pi*n
x=(-1)^n*pi/6+pi*n x=(-1)^n*pi/6+pi*n
x=(-1)^n*pi/12+pi*n/2