Пусть х км в час -скорость велосипЕдиста
y км в час - скорость мотоциклиста
встретились через 6 часов, значит велосипЕдист проехал 6х км,
мотоциклист проехал 6у км, а вместе они проехали 240 км
Первое уравнение:
6x+6y=240
час потратил на весь путь велосипЕдист
час потратил на весь путь мотоциклист
велосипЕдист потратил на 5 часов больше чем мотоциклист
Второе уравнение
Решаем систему уравнений:
138 не удовл смыслу задачи
О т в е т.
18 км в час -скорость велосипЕдиста
22 км в час - скорость мотоциклиста
Скорость первого катера:
v₁ = 60/t
Скорость второго катера:
v₂ = 60/(t+1)
Скорость сближения катеров:
v = v₁+v₂ = 60/t + 60/(t+1) =
= 60(t+1)+60t)/(t(t+1)) = (120t+60)/(t²+t)
По условию: v = S/t' = 50:1 = 50 (км/ч)
Тогда:
120t + 60 = 50t² + 50t
50t² - 70t - 60 = 0
5t² - 7t - 6 = 0 D = b²-4ac = 49+120 = 169
t₁ = (-b+√D)/2a = 2 (ч)
t₂ = (-b-√D)/2a = -0,6 (ч) - не удовлетворяет условию
Тогда скорость первого катера:
v₁ = 60/t = 60:2 = 30 (км/ч)
Скорость второго катера:
v₂ = 60/(t+1) = 60:3 = 20 (км/ч)
ответ: 30 км/ч; 20 км/ч.
Объяснение:
Уравнение принимает вид
20sinx=-1 sin x=-1/20 х=(-1)^(k)arcsin (-1/20)+πk, k∈Z или
х=(-1)^(k+1)arcsin (1/20)+πk, k∈Z б) sin(-)+sin=-1
формула синуса разности
sin(α-β)=sinαcosβ-cosαsinβ
уравнение принимает вид
√2sin (π/4)cos(x/10)- √2cos(π/4)sin (x/10)+sin (x/10)=1
так как sin (π/4)=cos(π/4)=√2/2, то
уравнение примет вид
cos(x/10)- sin (x/10)+sin (x/10)=1
cos(x/10)=1
x/10=2πn , n∈Z
x=20πn, n∈Z
в) sin^2(10x)=1/4
решаем два уравнения
sin10x=1/2 или sin 10x=-1/2
10х=(-1)^(k)π/6+πk, k∈Z или 10х=(-1)^(k+1)π/6+πk, k∈Z
г) cos²x=20cosx
или
cos²x-20cosx=0
cosx(cosx-20)=0
cosx=0 или сos x-20 =0
x=π/2 +πk, k∈Z cos x=20 - уравнение
не имеет решений
ответ.
x=π/2 +πk, k∈Z
д) cos²(x)+19cos(x)=20
Квадратное уравнение относительно косинуса, решается заменой переменной
сosx=t
-1≤t≤1
t²+19t-20=0
D=19²-4·(-20)=361+80=441=21²
t=(-19-21)/2<-1 или t=(-19+21)/2=1
cosx=1
x=2πn,n∈Z
е) cos²(x)+58sin(x)+119=0
так как cos²x=1-sin²x
1-sin²x+58sinx+119=0
или
sin²x-58sinx -120=0
Замена переменной
sin x= t
-1≤t≤1
t²-58t-120=0
D=(-58)²-4·120=3364+480=3844=62²
t=(58-62)/2=-2<-1 или t=(58+62)/2=60>1
Уравнения
sin x=-2
sin x=60
не имеют решений
ж) 20sin(x)=cos(x)
это однородное тригонометрическое уравнение первой степени. Решается делением на соs x≠0
20 tgx=1
tgx=1/20
х=arctg (1/20)+πk, k∈Z