№412.
Пусть имеется х кг апельсинов. В пакет вмещается х/3 кг, в коробку - х/5 или х/3-2 кг. Составим и решим уравнение:
х/5=х/3-2 |*15
3x=5х-30
5х-3х=30
2х=30
х=30:2
х=15
ответ: имеется 15 килограммов апельсинов.
№413(б).
Пусть n - первое нечётное число, тогда два последующих нечётных числа - (n+2) и (n+4). Их сумма равна n+n+2+n+4 или 69. Составим и решим уравнение:
n+n+2+n+4=69
3n=69-6
3n=63
n=63:3
n=21
n+2=21+2=23
n+4=21+4=25
ответ: да, это числа 21, 23 и 25.
№414(б).
Пусть купили х линеек, тогда кистей купили (х+7), а карандашей - 4х. Всего купили х+х+7+4х или 43 предмета. Составим и решим уравнение:
х+х+7+4х=43
6х=43-7
6х=36
х=36:6
х=6
х+7=6+7=13
4х=4*6=24
ответ: купили 6 линеек, 13 кистей и 24 карандаша.
№412.
Пусть имеется х кг апельсинов. В пакет вмещается х/3 кг, в коробку - х/5 или х/3-2 кг. Составим и решим уравнение:
х/5=х/3-2 |*15
3x=5х-30
5х-3х=30
2х=30
х=30:2
х=15
ответ: имеется 15 килограммов апельсинов.
№413(б).
Пусть n - первое нечётное число, тогда два последующих нечётных числа - (n+2) и (n+4). Их сумма равна n+n+2+n+4 или 69. Составим и решим уравнение:
n+n+2+n+4=69
3n=69-6
3n=63
n=63:3
n=21
n+2=21+2=23
n+4=21+4=25
ответ: да, это числа 21, 23 и 25.
№414(б).
Пусть купили х линеек, тогда кистей купили (х+7), а карандашей - 4х. Всего купили х+х+7+4х или 43 предмета. Составим и решим уравнение:
х+х+7+4х=43
6х=43-7
6х=36
х=36:6
х=6
х+7=6+7=13
4х=4*6=24
ответ: купили 6 линеек, 13 кистей и 24 карандаша.
sin α*sin β = (1/2)[cos(α-β) - cos(α+β)].
sin(10x)sin(2x)=sin(8x)sin(4x) (1/2)[cos(10x-2x) - cos(10x+2x)] = (1/2)[cos(8x-4x) - cos(8x+4x)]
(1/2)[cos(8x) - cos(12x)] = (1/2)[cos(4x) - cos(12x)]
После сокращения получаем:
cos(8x) = cos(4x)
cos(8x) = 2cos²(4x) - 1
Подставив вместо cos(8x) равное ему 2cos²(4x) - 1, получаем квадратное уравнение: 2cos²(4x) - cos(4x) - 1 = 0.
Если заменить cos(4x) = у, получим 2у² - у - 1 = 0.
Квадратное уравнение, решаем относительно y:
Ищем дискриминант:D=(-1)^2-4*2*(-1)=1-4*2*(-1)=1-8*(-1)=1-(-8)=1+8=9;
Дискриминант больше 0, уравнение имеет 2 корня:
y_1=(√9-(-1))/(2*2)=(3-(-1))/(2*2)=(3+1)/(2*2)=4/(2*2)=4/4=1;
y_2=(-√9-(-1))/(2*2)=(-3-(-1))/(2*2)=(-3+1)/(2*2)=-2/(2*2)=-2/4=-0,5.
Обратная замена: cos(4x) = 1
4х = Arc cos 1 = 2πn
x₁ = 2πn / 4 = πn / 2
cos(4x) = -0,5
4x = Arc cos (-0,5) =