192
Объяснение:
Чётные цифры: 0, 2, 4, 6, 8.
пятизначные числа не начинаются с 0, значит, на первом месте любая из четырёх цифр: 2, 4, 6, 8 На втором месте цифра 1 или 3, два варианта.
На третьем месте можно написать 0, но нельзя ту цифру, которая на первом месте. Цифры в записи числа не должны повторяться. Значит, четыре варианта для записи второй цифры.
На четвёртом месте цифра 5 или 7 - два варианта.
На пятом месте - чётная цифра, но не такая, как на первом и третьем - три варианта.
На шестом месте цифра 9 - один вариант.
По правилу произведения перемножаем возможные варианты постановки каждой цифры:
4⋅2⋅4⋅2⋅3⋅1=192
ответ: 192
192
Объяснение:
Чётные цифры: 0, 2, 4, 6, 8.
пятизначные числа не начинаются с 0, значит, на первом месте любая из четырёх цифр: 2, 4, 6, 8 На втором месте цифра 1 или 3, два варианта.
На третьем месте можно написать 0, но нельзя ту цифру, которая на первом месте. Цифры в записи числа не должны повторяться. Значит, четыре варианта для записи второй цифры.
На четвёртом месте цифра 5 или 7 - два варианта.
На пятом месте - чётная цифра, но не такая, как на первом и третьем - три варианта.
На шестом месте цифра 9 - один вариант.
По правилу произведения перемножаем возможные варианты постановки каждой цифры:
4⋅2⋅4⋅2⋅3⋅1=192
ответ: 192
Сделав развертку куба видим, что для того чтобы его накрыть, нужно четыре квадрата выстроенные в одну линию, а на платке (если не резать) таких квадратов максимум 3, поэтому завернуть не разрезая нельзя
На 8 делятся те числа, последние цифры которых заканчиваются на число кратное 8.
Всех трицифровых чисел (999-100):1+8=900
из них на 8 делится (992-104):8+1=112
трицифровых занчивающиеся на 8 (998-108):10+1=90
трицифровых чисел, кратных 8, и заканичивающихся на 8 будет (968-128):40+1=22
значит вероятность того что Вася Восьмёркин докажет своё утверждение равна 22/90=11/45