М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
yaaaaaaan
yaaaaaaan
05.07.2022 20:34 •  Алгебра

Найдите значение выражения 0,1⋅(−10)^4+ 5⋅(−10)^3+ 33

👇
Ответ:
stalker1897ox9hzs
stalker1897ox9hzs
05.07.2022
0,1⋅(−10)^4+ 5⋅(−10)^3+ 33 =1000-5000+33=-3967
4,7(26 оценок)
Открыть все ответы
Ответ:
syav1979
syav1979
05.07.2022

Пусть событие А₁ - "выбран первый кубик (обычный)"

Пусть событие А₂ - "выбран второй кубик (нестандартный)"

Пусть событие В - "выпало сочетание {3; 5} при двукратном бросании кубика"

Поскольку нас интересует вероятность, связанная со вторым кубиком, то распишем вероятность события А₂В двумя :

P(A_2B)=P(A_2)\cdot P_{A_2}(B)=P(B)\cdot P_B(A_2)

Из этого равенства выразим вероятность того, что брошен был второй кубик, при условии выпадения нужного сочетания:

P_B(A_2)=\dfrac{P(A_2)\cdot P_{A_2}(B)}{P(B)}

Знаменатель можно расписать по формуле полной вероятности:

P_B(A_2)=\dfrac{P(A_2)\cdot P_{A_2}(B)}{P(A_1)\cdot P_{A_1}(B)+P(A_2)\cdot P_{A_2}(B)}

Собственно говоря, записана формула Байеса.

Выбор каждого из кубиков равновероятен:

P(A_1)=P(A_2)=\dfrac{1}{2}

Вероятность выпадения каждого из имеющихся чисел на первом кубике (от 1 до 6):

p=\dfrac{1}{6}

Найдем вероятность выпадения на первом кубике сочетания {3; 5}, учитывая, что этой ситуации соответствует два элементарных исхода (3; 5) и (5; 3):

P_{A_1}(B)=\dfrac{1}{6} \cdot\dfrac{1}{6}+\dfrac{1}{6} \cdot\dfrac{1}{6}=\dfrac{1}{36} +\dfrac{1}{36}=\dfrac{2}{36}=\dfrac{1}{18}

Вероятность выпадения каждого из имеющихся чисел на втором кубике (1, 3, 5):

q=\dfrac{1}{3}

Найдем вероятность выпадения на втором кубике сочетания {3; 5}:

P_{A_2}(B)=\dfrac{1}{3} \cdot\dfrac{1}{3}+\dfrac{1}{3} \cdot\dfrac{1}{3}=\dfrac{1}{9} +\dfrac{1}{9}=\dfrac{2}{9}

Подставим все значения:

P_B(A_2)=\dfrac{\dfrac{1}{2} \cdot \dfrac{2}{9}}{\dfrac{1}{2}\cdot \dfrac{1}{18}+\dfrac{1}{2}\cdot \dfrac{2}{9}}=\dfrac{\dfrac{2}{9}}{\dfrac{1}{18}+\dfrac{2}{9}}=\dfrac{4}{1+4}=\dfrac{4}{5}=0.8

ответ: 0.8

4,7(55 оценок)
Ответ:
NoName353647
NoName353647
05.07.2022

Объяснение:

Дано: ∆ABC, в котором ∠C = 90º.

Доказать: a2 + b2 = c2.

Пошаговое доказательство:

Проведём высоту из вершины C на гипотенузу AB, основание обозначим буквой H.

Прямоугольная фигура ∆ACH подобна ∆ABC по двум углам:

∠ACB =∠CHA = 90º,

∠A — общий.

Также прямоугольная фигура ∆CBH подобна ∆ABC:

∠ACB =∠CHB = 90º,

∠B — общий.

Введем новые обозначения: BC = a, AC = b, AB = c.

Из подобия треугольников получим: a : c = HB : a, b : c = AH : b.

Значит a2 = c * HB, b2 = c * AH.

Сложим полученные равенства:

a2 + b2 = c * HB + c * AH

a2 + b2 = c * (HB + AH)

a2 + b2 = c * AB

a2 + b2 = c * c

a2 + b2 = c2

Теорема доказана.

4,5(58 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ