Докажите, что середины сторон квадрата являются вершинами другого квадрата.
1). Рассмотрим треугольники в углах исходного квадрата, - KBM; MCN; NDL; LAK. Все они являются равнобедренными прямоугольными треугольниками с равными катетами.
Следовательно, их гипотенузы также равны: KM = MN = NL = LK.
Кроме того, так как углы при гипотенузах равны 45°, то:
∠KMN = ∠MNL = ∠NLK = ∠LKM = 90°
Получили:
KMNL - ромб с углами по 90° => KMNL является квадратом.
2). Проведем в четырехугольнике KMNL диагонали ML и KN.
Так как BK = CN = AK = ND, то ВС || KN || AD
Аналогично: AB || ML || CD.
Следовательно: ML⊥KN, причем: ML = KN.
Значит KMNL - ромб с равными диагоналями, т.е. KMNL - квадрат.
5b = 15a;
b=3a;
P=a+b+c;
50=a+3a+20;
30=4a;
a=30/4=7.5;
b=3*7.5=22.5;
c=5+15=20;
ответ:самая маленькая сторона треугольника - a (7.5)
Формулы, которые я использовал:
- P=a+b+c (периметр треугольника);
- x/y=a/b (биссектриса внутреннего угла треугольника делит противолежащую сторону на отрезки, пропорциональные прилегающим сторонам)