Задана окружность с центром в точке О , АВ - диаметр ,
АС и ВД - касательные к окружности, точки А и В - точки касания.
Радиус окружности, проведённый в точку касания перпендикулярен касательной ⇒ АО⊥АС и ВО⊥ВД .
СД - касательная, точка Н - точка касания ⇒ ОН⊥СД .
Получили четырёхугольник АСДВ - прямоугольная трапеция.
АС=СН и ВД=ДН , так как отрезки касательных к окружности, проведенных из одной точки, равны . ОА=ОН=ОВ как радиусы окружности, СО - общая ⇒ ΔАОС=ΔНОС , ΔВОД=ΔНОД по трём сторонам ⇒ ∠АСО=∠НСО, значит СО - биссектриса.
Рассмотрим ΔСОД. ∠СОД=90°, т.к. ∠ДСО+∠СДО=(∠С+∠Д ):2=90°
ОН - высота, опущенная из прямого угла есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой, то есть ОН²=СН*ДН , но СН=СА и ДН=ДВ, значит
ОН²=СА*ДВ
1) Так как a и b меньше нуля ,то есть оба отрицательные числа ,то произведение двух отрицательных чисел будут давать только положительный результат
2)Сумма двух любых отрицательных чисел будут давать только отрицательный результат
3)Так как b<a ,то b-a не будет больше 0
Рассмотрим на примере b=-3 ,a=-1=>-3+1<0
4)Так как оба числа являются отрицательными и куб степени а никак не влияет на знак ,то это равносильно произведению двух отрицательных чисел ,которое дают положительный результат
ответ:4