Обозначение координатных осей буквами х и у является общепринятым, однако буквы могут быть любые. Если используются буквы х и у, то плоскость называется xy-плоскость. В различных приложениях могут применяться отличные от букв x и y буквы, и как показано с нижерасположенных рисунках, есть uv-плоскости и ts-плоскости. Под упорядоченной парой действительных чисел мы имеем в виду два действительных чисел в определённом порядке. Каждая точка P в координатной плоскости может быть связана с уникальной упорядоченной парой действительных чисел путём проведения двух прямых через точку P: одну перпендикулярно оси Х, а другую - перпендикулярно оси у. В прямоугольной системе координат оси координат делят плоскость на четыре области, называемые квадрантами. Они нумеруются против часовой стрелки римскими цифрами, как Графиком уравнения с двумя переменными х и у, называется множество точек на ху-плоскости, координаты которых являются членами множества решений этого уравнения Пример: нарисовать график y = x2
попробую росписать, как найти точки пересечения графика с осями. Расмотрим ось икс: если график фуекции пересекает икс, значит икс будет равно некоторому значению, а игрек равно нолю. Теперь подставим в наш график 0=4х-4 или 4х-4=0 4х=0+4 4х=4 х=4:4 х=1 Получается точка с координатами (1; 0)
Рассмотрим ось игрек: если график функции пересекает игрек, значит будет теперь наоборот, игрек будет равно некоторому значению, а икс равно нолю. Подставляем: у=4*0-4 у=0-4 у=-4 Иммем еще одну точку (0; -4) Нарисуй этот график на онлайне и ты увидишь что график функции пересекает именно в этих точках оси координат.
В прямоугольной системе координат оси координат делят плоскость на четыре области, называемые квадрантами. Они нумеруются против часовой стрелки римскими цифрами, как
Графиком уравнения с двумя переменными х и у, называется множество точек на ху-плоскости, координаты которых являются членами множества решений этого уравнения Пример: нарисовать график y = x2