Поскольку переменная х входит в чётной степени, то график заданной функции симметричен относительно оси у. Производная этой функции равна нулю пр х = 0. Подставив это значение в уравнение функции, получаем у = 1. Исследуем поведение производной вблизи точки х = 0. х 0.5 0 -0.5 у' -0.6875 0 0.6875. Производная переходит с + на -, значит, при х = 0 имеем максимум функции, равный у = 1. Минимальное значение на заданном отрезке найдём, подставив значение х = +-3 в уравнение (достаточно х = 3, так как функция чётная) ymin = 1-3⁴-3⁶ = 1-3⁴*(1+3²) = 1-81*(1+9) = 1-810 = -809. ответ при (х=+-3) : умакс = 1, умин = -809.
Обозначим недостающее число через x.
а) Среднее арифметическое данного ряда = 24:
(3+8+15+30+x+24)/6 = 24; 80 + x = 24*6;
80 + х = 144
х = 144 - 80
х = 64
Пропущено число 64.
б) Размах ряда - это разность между наибольшим и наименьшим значениями ряда.
Если в ряду содержатся только положительные числа, то пропущено наибольшее число, оно равно :
x-3 = 52;
x= 55.
Если в ряду могут быть отрицательные числа, то пропущено наименьшее число, оно равно 12:
64-x=52;
x = 64-52 = 12.
в) Мода ряда - это число, которое встречается наиболее часто. Так как мода = 8, то пропущено число 8.
Объяснение: