1.Пусть f(x)=ax²+bx+c. Ясно, что a-b+c=f(-1). По условию f(-1)<0, и многочлен ax^2+bx+c не имеет действительных корней. Но это значит что парабола ax²+bx+c полностью находится ниже оси x и любое значение функции f(x) будет отрицательным. Значит f(0)=c<0 ответ: с<0. 2. y=(x^2+x)(x^2+9x+20) y'=(2x+1)(x^2+9x+20)+(2x+9)(x^2+x)=2(2x+5)(x^2+5x+2) 2(2x+5)(x^2+5x+2)=0 x=-5/2 x=-5/2+√17/2 x=-5/2-√17/2 Производная меняет знак с - на + в точках x=-5/2+√17/2, x=-5/2-√17/2 значит в этих точках функция имеет минимум. Подставляя значения в функцию находим y=-4. ответ: -4.
1)64=4(в кубе);z(6степени)=(z(2степени))(в кубе).сокращаем степени,и тогда получится =4х*z(во второй степени) 2)действия происходят аналогично.а(8 степени)=(а(2 степени))(в 4 степени);b(12степени)=(b(3степени))(в 4 степени). сокращаем степени, и тогда получится =а(в 2 степени)b(3степени) 3)32=2(5 степени);х(10степени)=(х(2 степени))(в 5степени);у(20 степени)=(у(4степени))(в 5 степени);сокращаем степени получаем 2х(2степени)у(4степени) 4)а(12степени)=(а(2степени))(в 6степени);b(18степени)=(b(3степени))(в 6 степени) сокращаем степени и получаем ответ=а(2степени)b(3степени)
x^2 - 5x + 6 = 0;
D = b^2 - 4ac;
D = -5^2 - 4 * 1 * 6;
D = 25 - 24 = 1;
D > 0, два корня!
x1,2 = (-b ± √D)/2a;
x1:x = (5 + 1)/2*1;
x = 6/2;
x = 3;
x2:x = (5 - 1)/2*1;
x = 4/2;
x = 2;
ответ: x ∈ [2; 3] или 2<=x<=3.