М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ilyavasyukov228
ilyavasyukov228
22.02.2020 01:15 •  Алгебра

Розвьязування обчислення найбільшого і найменшого (11 класс) f(x)=3x2-9x [-4; 10]

👇
Ответ:
areskinaelina
areskinaelina
22.02.2020
f(x)=3x^2-9x,\,\,\,\,[-4;10]
1. Похідна функції
f'(x)=6x-9
2. Похідная дорівнює нулю
6x-9=0 \\ x=1.5
3. Знайдемо значення функції у точці х=-4, х=1,5 и х=10
f(-4)=3\cdot16+36=78 \\ f(1.5)=6.75-13.5=-6.75
f(10)=300-90=210

Найбільше значення функції 210, а найменше -6,75
4,5(81 оценок)
Открыть все ответы
Ответ:
mixrasp2002
mixrasp2002
22.02.2020
1) а) F'(x)=3*x^2+8*x-5+0 Так как (x^3)'=3*x^2, (x^2)'=2*x, (x)'=1, (C)'=0, то F'(x)=f(x) б) F'(x)=3*4*x^3-1/x=12*x^3-1/x Так как (x^4)'=4*x^3, (ln x)'=1/x, то F'(x)=f(x) 2) a) F(x)=-x^(-2)+sin x, (x^(-2))'=-2*x^(-2-1)=-2*x^-3=-2/x^3, (sin x)'=cos x и f(x)=2/x^3+cos x След. F'(x)=f(x) б) F(x)=3*e^x Так как (3*e^x)'=3*(e^x)'=3*e^x и f(x)=3*e^x, то F'(x)=f(x) 3) F(x)=x^3+2x^2+C, т. к. (x^3)'=3x^2 (2x^2)'=2*2x=4x C'=0 1. f(x)=3x^2+4x След. , F'(x)=f(x) 2. Т. к. график первообразной проходит через A(1;5), то 5=1^3+2*1+C - верное равенство 5=3+С С=2 ответ: F(x)=x^3+2x^2+2 4) у=x^2 у=9 x^2=9 х1=-3 х2=3 Границы интегрирования: -3 и 3 Чертим на коорд. пл. графики функ. у=x^2 и у=9, опускаем проекции из точек пересеч. графиков на ось х Полученный прямоугольник обозначаем как ABCD, площадь которого равна 9*(3+3)=54 S (OCD)= ∫ от 0 до 3 x^2 dx = 1/3*3^3-1/3*0=9 Т. к. S (ABO) = S (OCD), то S(иск) =54-2*9=36 В пятом условии для решения не хватает функции, график которой бы "замыкал" указанные параболы на коор. плоскости.
4,5(65 оценок)
Ответ:
ivinaKiyn
ivinaKiyn
22.02.2020
Task/24968563
Решите уравнение √(16 - x ) +√(x-14) =x²-30x +227              ответ: x=15 .

обозначаем f(x) = √(16 - x ) +√(x-14)    
D(f) : { 16 -x ≥0 ; x -14 ≤0 .⇔x∈[14;16]           * * * ООФ * * *
Очевидно  f(x) > 0,  т.к. 16 - x и  x -14  нулевое значение принимают при разных значениях переменного x .  * * * система 16 - x =0=x -14 не имеет решения * * * 
f '(x) =( √(16 - x ) +√(x-14) ) ' =  -1/2√(16 - x) +1/2√(x-14) =
1/2( √(16-x) - √(x -14) ) /2√(16 - x) *√(x-14)
f '(x) =0 ⇒√(16-x) - √(x-14)=0  ⇒x=15.
f ' (x)    +               -
14 15 16
f(x)     ↑      max    ↓           

maxf(x)    = f(15) =2 .   (1)
x∈[14;16]

g(x) =x²-30x +227 =(x-15)² +2 ≥2
min g(x) = g(15) =2 .  (2)

Из (1) и (2) следует  x=15 .

Можно и без применения производной :
f²(x) = (√(16 - x ) +√(x-14) )² =2+2√( (16 - x ) *(x-14) ) ≤ 2+(16 - x +x-14)=4 ,
равенство имеет место ,если 16 - x =x-14, т.е. при x=15.
Затем из f²(x) ≤ 4 ⇒ f(x)  ≤ 2 .                || f(x) >0 || 

2-ой Это не мое решение
( более искусственный, использован  частный случай неравенства Коши) * * * √ab ≤(a+b) /2 при a≥0 ,b ≥ 0 * * *
 ОДЗ :x∈[14;16] 
Оценим обе части равенства 
√(16-x ) =√(16-x )*1 ≤  (17-x)/2    (3) ; равенство, если 16 -x=1 ⇒x=15.
√(x-14)= √(x-14)*1   ≤ (x-13)/2     (4) ; равенство, если x-14=1  ⇒x=15. 
Из (3) и (4)  получаем √(16-x)+√(x-14) ≤ 2  * * * (17-x)/2 +(x-14)/2 =2 * * *

правая часть равенства x²-30x +227 =(x-15)² +2 ≥ 2
равенство опять , если x=15.
2 ≥ √(16-x ) +√(x-14) = x²-30x +227 ≥ 2 
равенство имеет место только при x=15.
4,6(1 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ