М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Aikony
Aikony
05.02.2020 19:34 •  Алгебра

Решите дробно-рациональные уравнения \frac{x - 1}{ \times + 1} - \frac{1 + x}{1 - x} = \frac{4}{ { x}^{2} - 1}  \frac{x + 6}{x + 5} + \frac{10}{ {x}^{2} - 25} = \frac{5}{4}  \frac{x + 6}{x - 4} - \frac{50}{(x - 4)(x - 9)} + \frac{x + 5}{x - 9} = 0

👇
Ответ:
7547854
7547854
05.02.2020

1) \frac{(x-1)(x-1)}{(x+1)(x-1)} + \frac{(1+x)(x+1)}{(x+1)(x-1)} =\frac{4}{(x+1)(x-1)}

Область определения: x ≠ -1; x ≠ 1

(x - 1)^2 + (x + 1)^2 = 4

x^2 - 2x + 1 + x^2 + 2x + 1 - 4 = 0

2x^2 - 2 = 0

2(x^2 - 1) = 0

2(x + 1)(x - 1) = 0

x1 = -1; x2 = 1

Оба корня не подходят по области определения.

Решений нет.

2) \frac{4(x+6)(x-5)}{4(x+5)(x-5)} +\frac{4*10}{4(x-5)(x+5)} =\frac{5(x-5)(x+5)}{4(x-5)(x+5)}

Область определения: x ≠ -5; x ≠ 5

4(x^2 + x - 30) + 40 = 5(x^2 - 25)

4x^2 + 4x - 120 + 40 = 5x^2 - 125

0 = x^2 - 4x - 45

(x - 9)(x + 5) = 0

x = -5 не подходит по области определения

x = 9 подходит.

3) \frac{(x+6)(x-9)}{(x-4)(x-9)} -\frac{50}{(x-4)(x-9)} +\frac{(x+5)(x-4)}{(x-4)(x-9)} =0

Область определения x ≠ 4; x ≠ 9

x^2 - 3x - 54 - 50 + x^2 + x - 20 = 0

2x^2 - 2x - 124 = 0

x^2 - x - 62 = 0

D = 1 - 4(-62) = 249

x1 = (1 - √249)/2; x2 = (1 + √249)/2

Но я предполагаю, что в задаче опечатка, должно быть:

\frac{(x+6)(x-9)}{(x-4)(x-9)} +\frac{50}{(x-4)(x-9)} +\frac{(x+5)(x-4)}{(x-4)(x-9)} =0

Тогда получается уравнение

x^2 - x - 12 = 0

(x - 4)(x + 3) = 0

Подходит только корень

x = -3

4,4(37 оценок)
Открыть все ответы
Ответ:
AlyaMrr
AlyaMrr
05.02.2020

Задача 1.

В группе 30 студентов. Необходимо выбрать старосту, заместителя старосты и профорга. Сколько существует это сделать?

Решение. Старостой может быть выбран любой из 30 студентов, заместителем - любой из оставшихся 29, а профоргом – любой из оставшихся 28 студентов, т.е. n1=30, n2=29, n3=28. По правилу умножения общее число выбора старосты, его заместителя и профорга равно     N=n1n2n3=302928=24360.

Задача 2.

Два почтальона должны разнести 10 писем по 10 адресам. Сколькими они могут распределить работу?

Решение. Первое письмо имеет n1=2 альтернативы – либо его относит к адресату первый почтальон, либо второй. Для второго письма также есть n2=2 альтернативы и т.д., т.е. n1=n2=…=n10=2. Следовательно, в силу правила умножения общее число распределений писем между двумя почтальонами равно .

Задача  3.

В ящике 100 деталей, из них 30 – деталей 1-го сорта, 50 – 2-го, остальные – 3-го. Сколько существует извлечения из ящика одной детали 1-го или 2-го сорта?

Решение. Деталь 1-го сорта может быть извлечена го сорта По правилу суммы существует извлечения одной детали 1-го или 2-го сорта.  

Задача 4.  

Порядок выступления 7 участников конкурса определяется жребием. Сколько различных вариантов жеребьевки при этом возможно?

Решение. Каждый вариант жеребьевки отличается только порядком участников конкурса, т.е. является перестановкой из 7 элементов. Их число равно

Задача 5.

В конкурсе по 5 номинациям участвуют 10 кинофильмов. Сколько существует вариантов распределения призов, если по всем номинациям установлены различные премии?

Решение. Каждый из вариантов распределения призов представляет собой комбинацию 5 фильмов из 10, отличающуюся от других комбинаций, как составом, так и их порядком. Так как каждый фильм может получить призы как по одной, так и по нескольким номинациям, то одни и те же фильмы могут повторяться. Поэтому число таких комбинаций равно числу размещений с повторениями из 10 элементов по 5:  

Задача  6.  

В шахматном турнире  участвуют 16 человек. Сколько партий должно быть сыграно в турнире, если между любыми двумя участниками должна быть сыграна одна партия?

Решение. Каждая партия играется двумя участниками из 16 и отличается от других только составом пар участников, т.е. представляет собой сочетания из 16 элементов по 2. Их число равно  

Вот надеюсь если не правильно напиши в комментариях (толь нужно будет написать где неправильно и почему)

4,6(30 оценок)
Ответ:
Кирюха2017
Кирюха2017
05.02.2020

Объяснение:

f'x = (ctg(x^2 × y))' = -1/(sin^2 (x^2 × y)) × (x^2×y)' = -1/(sin^2 (x^2 × y)) × 2 × x × y = - (2×x×y) / (sin^2 (x^2 × y))

f'y = ctg(x^2 × y))' = -1/(sin^2 (x^2 × y)) × (x^2×y)' = -1/(sin^2 (x^2 × y)) × x^2 = -(x^2) / (sin^2 (x^2 × y))

f"xx = ( -(2×x×y) / (sin^2 (x^2 × y)) )' = - (2×x×y)' × 1/ (sin^2 (x^2 × y)) - (2×x×y) × (1/(sin^2 (x^2 × y)))' = - (2×y) / (sin^2 (x^2 × y)) - (2×x×y) × ( -2/(sin^3 (x^2 ×y)) ) × cos(x^2 × y) × 2 × x × y = - (2×y) / (sin^2 (x^2 × y)) + (8×x^2×y^2) × (1/(sin^3 (x^2 ×y)) ) × cos(x^2 × y) = - (2×y) / (sin^2 (x^2 × y)) + ( 8×x^2×y^2 × cos(x^2 × y) ) / (sin^3 (x^2 ×y))

f"yy = (-(x^2) / (sin^2 (x^2 × y)))' = -(x^2) × (-2) × (sin^(-3) (x^2 × y)) × cos (x^2 × y) × x^2 = ( 2 × x^4 × cos (x^2 × y) ) / (sin^3 (x^2 × y))

f"xy = f"yx = - (2×x) / (sin^2 (x^2 × y)) - (2×x×y) / (sin^3 (x^2 × y)) × (-2 × cos(x^2×y) × x^2) = - (2×x) / (sin^2 (x^2 × y)) + 4 (x^3 × y × cos(x^2×y)) / (sin^3 (x^2 × y))

4,8(37 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ