y= x^2-7x+10/2x-10. x^2-7x+10=0 Д=49-40=9=3^2 Х1=2, Х2=5 x^2-7x+10/2x-10=(Х-2)(Х-5)/2(Х-5)=Х-2/2 у=x/2-1, кроме одной точки 2x-10=0 (получаем x=5 и y=1,5 Далее, когда 2прямые не имеют общих точек, правильно, когда они параллельны. Для прямой задаваемой формулой y=ax+b будут параллельны все прямые, задаваемые y=ax+c, где b и c любые числа, у тебя y=kx, следовательно, k=1/2 и прямая, соответственно, y=x/2 . Но тебе еще подойдет прямая , которая проходит через точку (0,0) и (5;1,5) ее k=y/x(второй точки) =1,5/5=3/10=0,3. Итог, k может принимать 2 значения k= 0,5 и k=0,3
A) k^2-3k<18 k^2-3k-18<0 Нули: По теореме Виета: k1=6 k2=-3 Определим знаки интервалов: -3 6> + - + ответ: k ∈ (-3; 6)
б)3k<10-k^2 k^2+3k-10<0 Нули: По теореме Виета: k1=-5 k2=2 Определим знаки интервалов: -5 2> + - + ответ: k ∈ (-5; 2)
в) -k^2<14-6k -k^2+6k-14<0 k^2-6k+14>0 Нули: D = 36-4*14=-20 Т.к. коэффициент при старшей степени = 1>0, ветви параболы направлены вверх. Т.к. D < 0, то парабола не пересекает ось Ох, т.е. лежит выше оси Следовательно, принимает положительное значение при любом k