Значение производной в точке касания равно угловому коэффициенту касательной, в данном случай двум. Значит абсцисса точки касания находится из уравнения:
Т.о. имеются две точки, в которых касательная к графику нашей функции имеет угловой коэффициент, равный 2. Вычислим значения функции в этих точках и проверим, удовлетворяют ли они уравнению касательной:
при х = -1 при
Проверим удовлетворяет ли уравнению касательной у=2х точка (-1;-2): -2 = 2*(-1) -2 = -2 ( ДА)
Проверим удовлетворяет ли уравнению касательной у=2х точка : (НЕТ)
t^2+t-20=0
D=1+80=81
t1=-1-9/2=-5(не подходит)
t2=-1+9/2=4
Вернемся к исходной
(1-x)^2=4
(1-x)=2 (1-x)=-2
х=-1 х=3