Найдем производную функции: y`(x) = 1 - 4/x^2 Приравняем ее нулю: 1-4/x^2 = 0 4/x^2 = 1 x^2 = 4 x1 = 2, x2 = -2 Нашему промежутку соответствует точка х = 2. Найдем вторую производную и подставим туда нашу точку, чтобы узнать что это за точка: y``(x) = 8/x^3 y``(2) = 8/8 = 1 Положительное значение второй производной, следовательно, х = 2 - точка минимума. Минимум равен y(2) = 2 + 4/2 = 4
На данном промежутке одна экстремальная точка, соответствующая минимума, значит график функции с обоих краев точки уходит вверх, чтобы найти максимальное значение сравним значения краев заданного промежутка: y(1) = 1 + 4/1 = 5 y(3) = 3 + 4/3 = 4 + 1/3 y(1) = 5 больше, значит это точка максимума для данного промежутка.
Подробное объяснение: 1) Ищем нули функции: первая скобка равна нулю при х=-2 вторая скобка равна нулю при х=4 2) Рисуем числовую ось и расставляем на ней найденные нули функции - точки -2 и 4 (-2)(4) Точки рисуем с пустыми кружочками ("выколотые"), т.к. неравенство у нас строгое (знак < )
3) Начинаем считать знаки на каждом интервале, начиная слева-направо. Для этого берём любую удобную для подсчёта точку из интервала, подставляем её вместо икс и считаем знак: 1. х=-100 -100+2 <0 знак минус -100-4 <0 знак минус минус*минус=плюс Ставим знак плюс в крайний левый интервал + (-2)(4)
2. аналогично, х=0 0+2 >0 знак плюс 0-4 <0 знак минус плюс*минус=минус + _ (-2)(4)
3. x=100 100+2>0 знак плюс 100-4>0 знак плюс плюс*плюс=плюс + - + (-2)(4)
Итак, знаки на интервалах мы расставили. Смотрим на знак неравенства: < 0 Значит, нам надо взять только те интервалы, где стоят минусы. В данном случае, такой интервал один (-2;4) Это и есть ответ.
Теперь краткая запись решения: (х+2)(х-4)<0 + - + (-2)(4)
(2a-3)(2a+3)=4a²-9
b)
(m-2n)=m²-4mn+4n²