М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Dk000
Dk000
30.05.2020 06:06 •  Алгебра

Докажите, что 13^2n+1 +2*4^n при любых n принадлежащих n (натуральным) кратно 5.

👇
Ответ:
PavelStronskiy
PavelStronskiy
30.05.2020
13^2n+1+2*4^n

Для получения некоторых выводов начнем подставлять значения n,начиная с единицы.
Для того,чтобы число было кратно 5,необходимо,чтобы последней его цифрой был 0 или 5,поэтому исследуем лишь последнюю цифру числа,а не его целиком.

Итак:
n=1
первое слагаемое заканчивается на цифру 7 ,второе на цифру 8 (4^1*2) их сумма будет 15,число заканчивается на 5,следовательно кратно пяти.

n=2
первое слагаемое заканчивается на цифру 3,второе на цифру 2(4^2*2) их сумма будет 5,число заканчивается на 5,следовательно кратно пяти.

А теперь самое главное,какое бы n не продолжили подставлять в результате всегда будет получаться 2 комбинации (7+8 или 3+2,проверте сами),т.е. мы рассмотрели все возможные варианты,на основании которых мы можем сделать заключение,что данное выражение,при натуральном n,кратно пяти.
4,5(69 оценок)
Открыть все ответы
Ответ:
Nuraaaykaaa
Nuraaaykaaa
30.05.2020
Для того,чтобы сумма квадратов корней уравнения равнялась какой-либо величине, эти корни должны существовать. Значит, дискриминант нашего уравнения должен быть неотрицательным,т.е
(3p-5)^2-4(3p^2-11p-6)>=0. При таких "p" у исходного уравнения найдутся(возможно, совпадающие) корни x1 и x2. Запишем для них теорему Виета:
x1+x2=-b/a=5-3p
x1*x2=c/a=3p^2-11p-6
Теперь,не вычисляя корней, можно найти сумму их квадратов через "p": x1^2 + x2^2.
Выделим полный квадрат:
(x1+x2)^2-2x1*x2= (5-3p)^2-2(3p^2-11p-6).
По условию, эта сумма квадратов  равна 65.
Получаем:
(5-3p)^2-2(3p^2-11p-6)=65
Решим его:
25-30p+9p^2-6p^2+22p+12-65=0
3p^2-8p-28=0
D=(-8)^2-4*3*(-28)=400
p1=(8-20)/6=-2
p2=(8+20)/6=14/3
Проверим, подставив эти значения "p" в исходное уравнения, чтобы убедиться, что дискриминант неотрицателен.
Проверять здесь не буду из-за экономии времени. Все найденные "p" подходят.
Теперь найдем корни уравнения:
1)p=-2
x^2-11x+28=0
x1=4; x2=7
2)p=14/3
x^2+9x+8=0
x1=-8; x2=-1
ответ: при p=-2 x1=4, x2=7; при p=14/3 x1=-8, x2=-1.
4,5(71 оценок)
Ответ:
СофаСтар2
СофаСтар2
30.05.2020

Функция y(x) = -x^2 + 2x + 8

 

1) Очень дико видеть "область определения", потому что это то, что задаёт математик. Область существования вещественных прообразов называть "область определения" — дичь! Так вот, область существования аргумента здесь — всё множество действительных чисел ("вся числовая прямая").

 

2) Пересечение с осью аргументов означает равенство y = 0. То есть требуется решить уравнение -x^2 + 2x + 8 = 0. Это алгебраическое уравнение второго порядка. Два его корня суть 6 и -2.

 

3) Чётность/нечётность (x - 6)(x + 2) = 0 относительно оси значений (x = 0)? Нет, не обладает свойствами ни чётности, ни нечётности.

 

4) Тут меня раза три остановили, когда я стал исследовать на экстремумы через производную. Если исследовать всё-таки через производные, то

 

\frac{d}{dx} \cdot \left(-x^2 + 2x + 8\right) = -2x + 2

 

Точки экстремума: -2x + 2 =0 \Leftrightarrow x = 1 0[/tex]

 

Вторая производная: \frac{d^2}{dx^2} \cdot \left(-x^2 + 2x + 8\right) = -2 => выпуклость вверх для любого значения агрумента (прообраза) => точки экстремума — максимумы.

 

Функция монотонно возрастает при x < 1 и монотонно убывает при x > 1.

 

5) Точки экстремумов были найдены выше.

 

6) Рисунок 1 в аттаче.

 

7) Они хотят интеграл? Ого. Не, это только завтра.


Дана функция у = - х2+2х+8. найти: 1) область определения функции; 2) точки пересечения функции у =
4,6(30 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ