Пусть х - скорость водителя, тогда t=240/x - время, за которое он должен проехать 240 км, x - средняя скорость, т.к. х=S/v.
Фактически водитель ехал 1,5 часа со скоростью х км/ч и проехал путь 1,5х км. Время стоянки 18 мин = 18/60 часа = 0,3 часа.
Т.о. время на оставшийся путь равно t = 240/x -1,5 -0,3, который он ехал со скоростью (х+20) км/ч,
этот путь равен (х+20)(240/x -1,8).
Составим уравнение: 1,5х + (х+20)(240/x -1,8) = 240.
Решите и найдите х. Это и будет средняя скорость.
1,5х2 +(х+20)(240 - 1,8х) = 240х; -0,3х2 - 36х + 4800 = 0;
х2 + 120х - 16000 = 0;
D= 14400 + 64000 = 78400 = 2802 ; x=80.
ответ: 80.
100x+y=(10x+y)k, где x,y,k - однозначные числа, причем x,k не равны 0.
Перепишем это уравнение как 10x(10-k)=y(k-1). Такое возможно, только если y(k-1) делится на 10, а это возможно в следующих 4 случаях:
1) y=0, в этом случае k=10, и x - любое число от 1 до 9. Т.е. исходные числа
100, 200, 300, 400, 500, 600, 700, 800, 900.
2) k=1, тогда x=0, чего быть не может.
3) y=5, тогда k=10-9/(2x+1), т.е. к - целое только если x=1 или x=4. Это дает числа 105 и 405.
4) k-1=5, т.е. k=6, отсюда 40x=5y, т.е. y=8x, и значит x=1, y=8, что дает 108.
Итак, ответ: 100, 200, 300, 400, 500, 600, 700, 800, 900, 105, 108, 405.