x = π*n , n∈Z
x = -π/4 +π*k , k∈Z
Объяснение:
Используем формулу понижения степени :
sin^2(t) = (1-cos(2t) )/2
( (1-cos(2x) )/2)^2 + ( ( 1-cos(2x +π/2) )/2)^2 = 1/4
Умножаем на 4 обе части уравнения, учитывая, что
cos(2x +π/2) = -sin(2x)
(1-cos(2x) )^2 +(1+sin(2x) )^2 = 1
1 -2*cos(2x) +cos^2(2x) +1+2*sin(2x) +sin^2(2x) = 1
Поскольку : cos^2(2x)+sin^2(2x) = 1
-2*cos(2x)+2*sin(2x) = -2
cos(2x) -sin(2x) = 1
√2/2 *( cos(2x) -sin(2x) ) =√2/2
cos(2x+π/4) = √2/2
2x+π/4 = +-π/4 +2*π*n , n∈Z
x+π/8 = +-π/8 +π*n, n∈Z
x = π*n , n∈Z
x = -π/4 +π*k , k∈Z
Теперь про область значений данной функции. Если вспомнить график (синусоиду) или единичную окружность, то легко увидеть, что для у = Sin x область значений у∈[-1;1]
Но в нашем случае в формуле функции стоит -3. Это значит, что каждое значение "у" изменили на -3
Стало: у∈[ -4; -2]
2) у =2 Sin x cуществует при любом значении х. Значит, область определения х∈(-∞ ;+∞)
Теперь про область значений данной функции. Если вспомнить график (синусоиду) , то легко увидеть, что для у = 2Sin x область значений у∈[-2;2].
Но в нашем случае в формуле функции стоит ещё +1. Это значит, что каждое значение "у" увеличили на 1. Получим: у∈[ -1; 3]
3) у = Cos 2x cуществует при любом значении х. Но этот косинус стоит под корнем. А корень существует только тогда, когда подкоренное выражение неотрицательно, т.е. 1 - Cos2x ≥ 0
Теперь надо представить график у = Cos 2x. Эта косинусоида "пляшет" в пределах [-1; 1]
Если от 1 отнимать все значения косинуса, то будут получаться числа ≥ 0
Вывод: х∈(-∞ ; +∞)
Что касается множества значений у, то арифметический квадратный корень из числа- это неотрицательное число.
у∈[ 0; +∞)