М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
voytyukk
voytyukk
07.03.2022 16:58 •  Алгебра

Решить систему уравнений, решение желательно фотографией))

👇
Открыть все ответы
Ответ:
lasyaaa
lasyaaa
07.03.2022
Пусть изначальное число xy, т.е х десятков и у единиц. ху=10х+у
сумма цифр равна 10, т.е х+у=10
переставили цифры: ух, теперь ух=10у+х
цифру единиц увеличили на 1, т.е. 10у+х+1
и раз новое число в 2 раза больше изначального можно составить уравнение:
10у+х+1=2(10х+у)
10у-2у=20х-х-1
8у=19х-1
выразим из первого уравнения х+у=10: у=10-х
8(10-х)=19х-1
19х+8х=80+1
27х=81
х=3
тогда у=10-х=10-3=7
получилось число 37
проверяем сумма цифр: 3+7=10
Если цифры этого числа переставить и цифру единиц нового числа увеличить на 1: получаем 73+1=74
и 74/2=37
4,6(91 оценок)
Ответ:
123443210968687
123443210968687
07.03.2022
y(x)=sin4x*cos3x-cos4x*sin3x=sin(4x-3x)=sin(x)

наименьшим положительным периодом функции y(x)=sin(x) есть 2\pi
----------------------------------
наименьший положительный период ctg(x) равен \pi
тогда у нас
y(x)=y(x+\pi)
пусть T - искомый период, тогда

3ctg(\frac{x}{3})+8=3ctg(\frac{x+T}{3})+8=3ctg(\frac{x}{3}+\frac{T}{3})+8=3ctg(\frac{x}{3}+\pi)+8

имеем, что \frac{T}{3}=\pi

окончательно T=3\pi

3 перед котангенсом вытягивает график в три раза вдоль оси ОУ по отношению к графику просто котангенса не влияя на период
8-ка - сдвигает график 3ctg(\frac{x}{3}) относительно оси OX на 8 единиц вверх, также не влияя на период
----------------------------------

проанализируем какова область определения функции:
1-cos(5x) \neq 0

cos(5x) \neq1

5x \neq 2\pi n, n\in Z

x \neq \frac{2\pi n}{5}, n\in Z

Как видим, запрещенные значения x - это симметричное относительно начала координат множество точек,
что означает, что и область определения функции y(x) также симметрична относительно начала координат. Это означает, что есть смысл проверять функцию на парность, дальше.

y(-x)=\frac{3sin(2*(-x))}{1-cos(5*(-x))}=\frac{3sin(-2x)}{1-cos(-5x)}=\frac{-3sin(2x)}{1-cos(5x)}=-\frac{3sin(2x)}{1-cos(5x)}=-y(x)

Функция оказалась непарной
4,7(45 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ