х - запланированная скорость
1620/х (время за которое должен был проехать) = (4*1620)/(9*х)+2+(5*1620)/((х+5)*9)
1620/х = 720/х+2+900/(х+5)
810/х=360/х+1+450/(х+5)
450/х=1+450/(х+5)
450(х+5)=х(х+5)+450х
450х+2250=х²+5х+450х
х²+5х-2250
дискриминант = 25+4*2250=95²
х1=-50 - не подходит
х2=45 км/ч - первоначальная скорость. тогда скорость после задержки х+5=50км/ч
2.
пусть скорость течения- х км/ч, тогда
v(км/ч) t(ч) s(км)
плот х 72/х
72
пароход (х+20) 72/(х+20)
зная, что разность времени движения составила 15 ч, составим уравнение по времени
72x+1440-72x=15x² +300x
-15x²-300x+1440=0 |: 15
-x²-20x+96=0
d=400+4*96=784
x₁=(20+28)/-2 = -24 (не удовлетворяет условию)
х₂=(20-28)/-2= 4
ответ: скорость течения 4 км/ч
Раскладывать выражения на множители будем, используя группировки:
1). x – 3y + x2 – 9y2 = (x – 3y) + (x2 – 9y2).
По формуле а2 – b2 = (a – b)(а + b):
(x – 3y) + (x – 3y)(x + 3y).
Выносим выражение (x – 3y) за скобку:
(x – 3y)(1 + x + 3y).
2). 9m2 + 6mn + n2 – 25 = (9m2 + 2 ∙ 3mn + n2) – 25.
Упростим выражение в скобках по формуле квадрат суммы (а + b)2 = (а2 + 2ab + b2) и раскладываем как разность квадратов:
(3m + n)2 – 52 = (3m + n – 5)(3m + n + 5).
3). Выносим b3 за скобку и группируем:
ab5 – b5 – ab3 + b3 = b3(ab2 – b2 – a + 1) = b3((ab2 – b2) – (a – 1)) = b3[b2(a – 1) – (a – 1)].
Выносим общий множитель (a – 1) за скобку:
b3(a – 1)(b2 – 1).
4). 1– x2 + 10xy – 25y2 = 1– (x2 – 10xy + 25y2).
Выражение в скобке «сворачиваем» как квадрат разности, к полученному выражению применяем формулу разности квадратов а2 – b2 = (a – b)(а + b):
1– (x – 5y)2 = (1– x + 5y)(1+ x – 5y).
ответ: 1). x – 3y + x2 – 9y2 = (x – 3y)(1 + x + 3y); 2). 9m2 + 6mn + n2 – 25 = (3m + n – 5)(3m + n + 5); 3). ab5 – b5 – ab3 + b3 = b3(a – 1)(b2 – 1); 4). 1– x2 + 10xy – 25y2 = (1– x + 5y)(1+ x – 5y).
Объяснение:
2) = 2Cos70Cos40
3) = 2Sin 45Cos25 = √2Cos25