2) x=0, y=-4 (это точки пересечение графика с осью ОУ) y=0, x=-2;+2 (это точки пересечение графика с осью ОХ)
3) f(x)>0 при хЭ (минус бесконечности; -2) и (2; плюс бесконечнсти) f(x)<0 при хЭ (-2;2)
4) y'=2*x (производная) y'=0 2*x=0 x=0- точка экстремума. f '(x)>0 при xЭ (0; плюс бесконечности) f '(x)<0 при xЭ (минус бесконечности; 0)
5) Функция возрастает на [0; плюс бесконечности) Функция убывает на (минус бесконечности; 0]
6) Хmin=0- точка минимума f(Xmin)=-4 7) на графике рисуешь что-то похожее на параболу, с вершиной в точке (0;-4) тоесть, у тя сначало функция убывает до этой точки, затем возрастает. А точки, которые были найдены в пункте 2) это есть точки пересечения с осями, их тоже надо на графике обозначить.
Надо знать периоды синуса и тангенса. Из них все получается. Алгоритм такой: т.к. период синуса 2Pi, то 3/2x=2Pi, значит x=4Pi/3. Это и есть наименьший положительный период. Аналогично, для тангенса. Его наименьший положительный период равен Pi. Значит 7x/8=Pi, откуда x=8Pi/7. Т.е. ответ 8pi/7.
Но вообще, этот метод применим только к функциям, которые имеют вид f(ax+b), где a,b - какие-то числа, и где период f(x) известен и равен T. Тогда приравнивем только ax=T (b - не трогаем), и отсюда находим x=T/a. Это и есть период функции f(ax+b). Докажем это. Так как период f(x) равен T, то f(ax+b)=f(ax+b+T)=f(a*(x+T/a)+b). А это и означает, что период функции f(ax+b) равен T/a.
Графики функций не пересекутся