Проведем ко всем точкам касания радиусы. Как известно, они будут перпендикулярами к касательным. Рассмотрим выделенную фигуру (рис.1). Она состоит из двух равных прямоугольных треугольников. Поэтому отрезки а1 равны (рис.2). Аналогично рассматриваем еще фигуру (рис.3). И т.д. В результате получаем множество равных между собой пар отрезков (рис.4) Тогда периметр отрезанных треугольников: р=р1+р2+р3=(a1+a2+b1+b2)+(a3+a4+c1+c2)+(a5+a6+d1+d2) Периметр исходного треугольника: Р=(с1+a3+a2+b1)+(b2+a1+a6+d2)+(d1+a5+a4+c2) Они состоят из одинаковых слагаемых. Значит, они равны. Р=р ответ: периметр исходного треугольника равен сумме периметров отрезанных треугольников
Подкоренное выражение должно быть неотрицательным. Из отрицательного числа нельзя извлечь квадратный корень. Решаем неравенство -2х²+5х+2≥0 Умножим на (-1), знак неравенства изменится на противоположный 2х²-5х-2≤0 Находим нули функции или корни уравнения 2х²-5х-2=0 D=(-5)²-4·2(-2)=25+16=41 x₁=(5-√41)/4 x₂=(5+√41)/4 Обе параболы и у=-2х²+5х+2 и у=2х²-5х-2 пересекают ось ох в точках x₁=(5-√41)/4 и x₂=(5+√41)/4 Только у первой параболы ветви направлены вниз и ответить надо на вопрос, когда она расположена выше оси ох ( у неравенства знак ≥0). У второй ветви вверх и ответить надо на вопрос, при каких х она расположена ниже оси ох ( неравенство сменило знак и теперь знак ≤0) А ответ и на первом рисунке и на втором один и тот же: х∈[(5-√41)/4; (5+√41)/4]
Можно вместо графиков парабол расставлять знаки (+ и -) Это уже метод интервалов. Любая функция проходя через точку, в которой она равна 0, меняет свой знак с + на - или с - на + Для неравенства -2х²+5х+2≥0 метод интервалов даст такую картинку знаков: так как неравенство нестрогое, то нули функции отмечаем сплошным, заполненным кружком, а здесь это [] - + - [х₁][х₂] ответом служит отрезок от точки х₁ до точки х₂ ( там где знак +) Для неравенства 2х²-5х-2≤0 метод интервалов даст такую картинку знаков: + - + [х₁][х₂] ответом является отрезок от точки х₁ до точки х₂ ( там где знак -) ответ. [(5-√41)/4; (5+√41)/4]
2) ((х-5у)²-(х+5у)²) : ху=((х-5у-х-5у)*(х-5у+х+5у)) : ху=(-10у * 2х) : ху=
=-20
3) ((3х+2у)²-9х²-4у²) : 6ху=(9х²+12ху+4у²-9х²-4у²) : 6ху=12ху : 6ху=2
4) (4х²+у²-(2х-у)²) : (-2ху)=(4х²+у²-4х²+4ху-у²) : (-2ху)=4ху : (-2ху)=-2
5) (25а²-16)(¹/₅ а+4-¹/₅ а-4)=(25а²-16) * 0=0
6) 49х²-9 - 7х =(7х-3)(7х+3) - 7х=7х+3-7х=3
7х-3 7х-3