Путь первый работник может выполнить задание за Х дней. Второй за У дней.
На 1/3 задания ему требуется Х/3 дней. Второму на 2/3 задания 2У/3
Х/3=(2У/3)-3
1/(1/Х+1/У)=2 1=2/Х+2/У ХУ=2Х+2У
—————————
Х=2У-9
ХУ=2Х+2У
———————————
У=(Х+9)/2
Х*Х+9Х=4Х+4У
Х*Х+9Х=4Х+2Х+18
Х*Х+3Х=18
(Х+1,5)*(Х+1,5)=20,25=4,5*4,5
Положительное решение Х=3
ответ: За 3 дня.
Проверка: Второй за 6 дней.
1/3 первый выполнит за день, второй 2/3 за 4 дня.
Первый за день делает 1/3 второй 1/6 . Вместе 1/2 часть задания. Значит вместе все сделают за 2 дня. ответ верный.
Объяснение:
Событие A₁- " первая деталь имеет дефект"
Противоположное ему событие:
Â₁- " первая деталь не имеет дефекта"
Событие A₂- " вторая деталь имеет дефект"
Противоположное ему событие:
Â₂- " вторая деталь не имеет дефекта"
и так далее
до (N+3) cобытия
A(N+3)-" N+3-я деталь имеет дефект"
Â(N+3)-" N+3-я деталь не имеет дефекта"
a) A-" ни одна из деталей не имеет дефекта
A=Â₁∩Â₂·∩..∩Â(N+3)
б)В-"по крайней мере одна из деталей имеет дефект"
B=(A₁∩Â₂·∩..∩Â(N+3)∪Â₁∩А₂∩..∩Â(N+3)∪...∪Â₁∩Â₂∩..∩А(N+3))∪
∪(A₁∩А₂∩..∩Â(N+3)∪Â₁∩А₂∩А₃∩..∩Â(N+3)∪...∪Â₁∩Â₂...∩А(N+2)∩А(N+3))∪
∪...(A₁∩A₂·∩..∩A(N+3))
в)C-" только одна из деталей имеет дефект"
С=A₁∩Â₂·∩..∩Â(N+3)∪Â₁∩А₂∩..∩Â(N+3)∪...∪Â₁∩Â₂∩..∩А(N+3)
г) D-"не более двух деталей имеют дефект
Значит две, одна или ни одной:
D=(A₁∩А₂∩..∩Â(N+3)∪Â₁∩А₂∩А₃∩..∩Â(N+3)∪...∪Â₁∩Â₂...∩А(N+2)∩А(N+3))∪
(Это две1 и 2; 1и 3; ... предпоследняя и последняя)
∪(A₁∩Â₂·∩..∩Â(N+3)∪Â₁∩А₂∩..∩Â(N+3)∪...∪Â₁∩Â₂∩..∩А(N+3))∪
(Это одна; 1 или вторая 2или ... последняя)
∪(Â₁∩Â₂·∩..∩Â(N+3))
(это событие А - ни одна из деталь не имеет дефекта, все без дефекта)
а₁, а₂, а₃, где а₂ =а₁ + д; или а₁ = а₂ - д;(1) а₃ = а₂ + д;(2)
по условию: а₁+ а₂ + а₃ = 30 (3), но сумма трех членов равна также: (а₁ + а₃)·3:2 = 30, ⇒ а₁ + а₃ = 20 (4). Сравнивая (3) и (4) (или вычитая из (3) (4)), получим: а₂ =10;
2. По условию: (а₁ - 5); (а₂ - 4); а₃ - геометрическая прогрессия.
Исходя из ее свойств (а₂ - 4)/(а₁ - 5) = а₃/(а₂ - 4) или, т.к. а₂ =10 и ⇒ а₂ - 4 = 6; 6/(а₁ - 5) = а₃/6 (5).
Преобразуем (5) и выразим а₁ и а₃ через а₂: пригодятся выражения (1) и (2).
а₃·(а₁ - 5) = 36 ; (а₂+д)·(а₂ -д -5) =36, Вставив а₂ = 10, получим: (10+д)·(10 - д - 5) =36; (10+д)·(5 - д) = 36;
50 + 5д -10д - д² = 36; д² + 5д - 14 = 0;
д₁ = (-5 + √(25+56):2 = (-5+9):2 = 2
(т.к. по условию прогрессия возрастающая, отрицательный д₂ на берем)
тогда а₁ = а₂ - д = 10 - 2 = 8; а₃ = а₂ +д =10 + 2 = 12;
Прогрессия наша: 8, 10, 12
Проверка: (а₂-4)/(а₁-5) = 12/(а₂-4) = 6:3=12:6, и новая прогрессия (3,6,12) геометрическая.