Какое же число является самым большим в мире?
Сейчас есть две системы наименования чисел – английская и американская.
Американская – довольно простая. Названия больших чисел строятся следующим образом: сначала идет латинское порядковое числительное, а затем добавляется суффикс «иллион». Исключение – миллион, что значит тысяча. Далее получаются числа: триллион, квадриллион, квинтиллион, секстиллион, септиллион, октиллион, нониллион и дециллион. Такую систему используют в США, Канаде, России и Франции.
Английская система более распространенная в мире. Ее используют в Испании и Великобритании, а так же в ряде других стран. Здесь названия стоятся так: к латинскому числительному прибавляют суффикс «иллион», к следующему числу (которое больше в 1000 раз) уже добавляют суффикс «иллиард». То есть после триллиона идет триллиард, после квадриллион, квадриллиард и так далее. Получается, что по английской и американской системам одни и те же большие числа называются по-разному.
В русский язык из английской системы пришел только миллиард (10 9), который американцы называют биллионом. Иногда в России употребляют слово триллиард, то есть 1000 триллионов или квадриллион.
Самое большое число, которое применяется в математическом доказательстве, это Число Грэма. Его использовали впервые в 1977 году в доказательстве оценки в теории Рамсея.
Оно выражено в особой 64-уровневой системе, поскольку связано с бихроматическими гиперкубами. Вывел систему Кнут в 1978 году. Он придумал понятие сверхстепень и предложил записывать ее стрелками вверх. В итоге, число Грэма G63 или просто G и является самым большим числом в мире. Оно даже попало в Книгу рекордов Гиннеса. Последние 50 цифр числа Грэма — это ...03222348723967018485186439059104575627262464195387.
2(x² + x + 1)² - 7(x - 1)² = 13(x³ - 1)
Введём две новые переменные:
u = x² + x + 1
v = x - 1
Тогда уравнение примет вид:
2u² - 13uv - 7v² = 0
Это однородное уравнение второй степени, делим обе части на v²
2u² - 13uv - 7v² = 0 / v²
2*(u/v)² - 13*(u/v) - 7 = 0
Замена: u/v = y
2y² - 13y - 7 = 0
D = 169 - 4*2*(-7) = 225
y₁ = (13 + 15) / 4 = 7
y₂ = (13 - 15) / 4 = -1/2
Значит, u/v = 7 отсюда u = 7v
или u/v = -1/2 отсюда v = -2u
Вернёмся к переменной x с соотношением u = 7v:
x² + x + 1 = 7(x - 1)
x² + x + 1 = 7x - 7
x² - 6x + 8 = 0
x₁ = 2; x₂ = 4
Вернёмся к переменной x с соотношением v = -2u:
x - 1 = -2(x² + x + 1)
x - 1 = -2x² - 2x - 2
2x² + 3x + 1 = 0
D = 9 - 4*2*1 = 1
x₁ = (-3 + 1) / 4 = -1/2
x₂ = (-3 - 1) / 4 = -1
ответ: 2; 4; -1; -1/2
у (кг) - масса отливка 2-ого вида
{8x+6y=29 {6y+8x=29 {6y+8x=29
{4y-2x=1 {4y-2x=1 | умножим на 4. {16y-8x=4
Складываем два уравнения системы:
6у+16у=29+4
22у=33
у=33 : 22
у=1,5 (кг) - масса отливки 2-ого вида
8х+6*1,5=29
8х=29-9
х=20 : 8
х=2,5 (кг) - масса отливки 1-ого вида
ответ: 2,5 кг и 1,5 кг.