1. Проекцией бокового ребра SA пирамиды является радиус описанной окружности R. H = √(SA² - R²). Найдем радиус из теоремы синусов. a/sin 60° = 2R 6√3/(√3/2) = 12 -- это 2R. R =6 H = √(10² -6² = 8. 2. Найдем производную y' = 28 * 1/cos²x - 28. Приравниваем ее нулю: 28/cos²x-28 = 0 cos²x = 1 cosx = 1 или cos x = -1 x= 2πn x= π +2πn, n∈Z. в заданный промежуток из корней принадлежит только 0. -π/40π/4 + + Функция возрастает на всем промежутке, значит наименьшее значение принимает в левом конце промежутка. min f(x) = f(-π/4) = 28*tg(-π/4) -28*(-π/4) -7π+7 = -28 +7π-7π+7 = -21.
1. Проекцией бокового ребра SA пирамиды является радиус описанной окружности R. H = √(SA² - R²). Найдем радиус из теоремы синусов. a/sin 60° = 2R 6√3/(√3/2) = 12 -- это 2R. R =6 H = √(10² -6² = 8. 2. Найдем производную y' = 28 * 1/cos²x - 28. Приравниваем ее нулю: 28/cos²x-28 = 0 cos²x = 1 cosx = 1 или cos x = -1 x= 2πn x= π +2πn, n∈Z. в заданный промежуток из корней принадлежит только 0. -π/40π/4 + + Функция возрастает на всем промежутке, значит наименьшее значение принимает в левом конце промежутка. min f(x) = f(-π/4) = 28*tg(-π/4) -28*(-π/4) -7π+7 = -28 +7π-7π+7 = -21.
x^3-x^2-4(x-1)^2=0
x^2(x-1)-4(x-1)^2=0
(x-1)(x^2-4x+4)=0
x-1=0 x=1
(x-2)^2=0 x=2