Всего шаров 20+15=35, общее число исходов равно числу сочетаний из 35 по 4, это составляет n=35!/(4!*31!)=(35*34*33*32)/(4*3*2), число благоприятствующих исходов равно произведению числа сочетаний из 15 по три, на число сочетаний из 20 по 1, m=20*15!/(3!*12!)=20*15*14*13/6=20*5*7*13; Искомая вероятность равна m/n=(20*5*7*13*4*3*2)/(35*34*33*32)=65/374≈0.174
1) Возьмём число 1: сразу же запишем двузначное число с повторяющимися цифрами, т.е. 11. Теперь запишем все числа, с котороми получатся двузначные числа( одна из цифр это 1), т.е. 12,13,14,15,16.(Не будем менять цифры, т.к. эти цыфры все будут в последующих числах). И так, у нас всего получилось 6 двузначных чисел. Если сделать жиу процедуру с каждой цифрой(всего их 6), то всего даузначных чисел получится 6*6=36.<br />2) Так как по условию цифры должны быть различными то мы просто убираем первое действие, которое мы рассматривали при первом условии, тогда с числом 1 получится 5 двузначных чисел, а т.к. у нас 6 цифр , тогда 5*6=30. Надеюсь все правильно :)
При разрезании верёвочки длины 1 на равных частей у кваждой будет длина
Для того, чтобы кусочки верёвочки длины 2 после разрезания были бы такой же длины, т.е. нужно разрезать верёвочку длины 2 на частей.
Значит всего будет частей.
Проще говоря, на сколько бы частей не разрезали эти верёвочки, общее число всех кусочков непременно окажется кратным трём, т.е. должно делиться на три. По признаку делимости на три, и сумма цифр такого числа обязательно должна делиться на три.
Среди вариантов ответов: 2014, 2015, 2016, 2017 или 2018, единственным подходящим вариантом будет 2016, поскольку:
не делится на три.
не делится на три.
делится на три!
не делится на три.
не делится на три.
Если предлагаются какие-то другие варианты ответов, то нужно выбрать тот, что кратен трём.
Всего шаров 20+15=35, общее число исходов равно числу сочетаний из 35 по 4, это составляет n=35!/(4!*31!)=(35*34*33*32)/(4*3*2), число благоприятствующих исходов равно произведению числа сочетаний из 15 по три, на число сочетаний из 20 по 1, m=20*15!/(3!*12!)=20*15*14*13/6=20*5*7*13; Искомая вероятность равна m/n=(20*5*7*13*4*3*2)/(35*34*33*32)=65/374≈0.174