2 вариант
1. Вычислите с формул сложения:
а) cos225° =cos(180°+45°) =cos180°*cos45° -sin180°*sin45°= -1*cos45° - 0*sin45° = - cos45° = -(√2) /2
б) sin3π/4 = sin(π - π/4) = sin(π)*cos(π/4) - cos(π)*sin(π/4) = 0*cos(π/4) - (-1)*sin(π/4) = sin(π/4) = (√2)/2
в) cos(5π/9)*cos(13π/9) - sin(5π/9)*sin(13π/9)=cos(5π/9+13π/9) =cos2π =1
г) ( tg(43°) +tg(17°) ) / ( 1 - tg(43°) *tg(17°) ) = tg(43°+17°) =tg60° =(√3 )/2
- - - - - - -
2. Упростите выражение:
а) cosα*cos2α +sin(-α)*sin2α
=cosα*cos2α - sinα*sin2α =cos(α+2α) =cos3α .
б) sin2α*cosα -cos2α*sinα =sin(2α-α) =sinα
- - - - - - -
3. Сократите дробь:
а) sin20°/cos10° =2sin10°cos10°/cos10° =2sin10°
б) sin6α/sin²3∝ =sin(2*3α)/sin²3∝=2sin3∝*cos3∝/sin²3∝ =
2cos3∝/sin3∝ = 2ctg3∝
- - - - - - -
4. Вычислите:
а) cos²(π/6) -sin²(π/6) = cos(2*π/6) =cos(π/3) = 1/2 ;
б) 2sin210°*cos210° = sin(2*210°) = sin420°=sin(360°+60°) = sin60° =(√3) /2.
- - - - - - -
5. Дано: cosα = 0,6 , π/2 < ∝< π . Найти sin2α.
sin2α =2sin∝*cos∝ = [ π/2 < ∝< π ⇒ sin∝ > 0 ] =
2√(1 -cos²∝) *cos∝ =2√( 1 -(-0,6)² ) *(-0,6) = - 1,2√(1 -0,36) = -1,2√(0,64) = - 1,2*(0,8) = - 0,96 .
Коротко: Наша цель найти k и b, чтобы подставить их в уравнение прямой y = kx + b.
Подробное решение:
Рассмотрим 1ую функцию:Возьмем произвольную точку; пусть это будет точка A(0; 0). Мы видим по графику, что это прямая. Уравнение прямой: y = kx + b (в некоторых учебниках пишут y = kx + m разницы нет вообще (только буква другая) ).
Мы смотрим, какой x у точки A (т.е. на 1ое число после скобки A(x; y) ). Видим, что x = 0. Аналогично и y = 0. Подставим эти значения в формулу. Вместо y (в формуле y = kx + b) идет 0; вместо x тоже 0, но его мы уже подставляем суда: y = kx + b. Получим: 0 = 0 + b. Это простейшее линейное уравнение. Хорошо видно, что b = 0.
Отлично, b нашли. Теперь найдем k. Возьмем любую другую точку, где x не равен 0. Пусть это будет точка B(2; 1). Помнишь как найти x и y этой точки? Правильно: x = 2, y = 1 (т.к. B(x; y) ). Подставим их в уравнение прямой y = kx + b (мы не забываем про b, его мы уже знаем). Получили: 1 = k * 2 + 0. Простое линейное уравнение. Решив его, увидим, что k = 0.5.
Теперь подставим k и b в наше уравнение прямой. Результатом всех наших действий стала формула уравнения прямой 1ой функции. ответ на 1ую задачу: y = 0.5x
Рассмотрим 2ую функцию:Я бы сказал, она самая простая. Y здесь фиксированный и не меняется при изменении x! Поэтому в таких случаях мы просто пишем y = 2. Эта функция всегда дает нам значение 2. Применять алгоритм из 1ого примера ни в коем случае не нужно.
Рассмотрим 3ью функцию:Применим алгоритм из 1ого примера. Возьмем точку A(0; 3). 3 = 0 + b => b = 3. Возьмем точку B(2; 0). 0 = 2 * k + 3 => k = -1.5. Все просто! ответ: y = -1.5k + 3
a=-2, b= -8, c= -6
D=b^2 - 4ac= (-8)^2 - 4*2*6= 64 - 48=16
т.к D (знак больше) 0 , то уравнение имеет 2 действительных корня.
x1,2 = -b + √D(это дробь)=8 + √16(тут тоже дробь) =
2a -2*2
x1= 8+16 = 24 = - 6
-4 -4
x2= 8-16 = -8 = 2
-4 -4
ответ: х1 = -6, х2 = 2