1) Матрица линейного оператора выглядит следующим образом
α₁₁ α₁₂
α₂₁ α₂₂
Составим соответствующие уравнения после действия этого оператора
5α₁₁+4α₁₂=11
5α₂₁+4α₂₂=25
4α₁₁-3α₁₂=-16
4α₂₁-3α₂₂=-11
Решая систему находим элемениы матрицы
α₁₁=-1 α₁₂=4
α₂₁= 1 α₂₂=5
ответ: 9
2) Составим матрицу оператора
1 7 8
-5 -1 8
-2 -4 1
Транспонируем ее
1 -5 -2
7 -1 -4
8 8 1
ответ: 17
3) Решим соответствующее характеристическое уравнение
Для всех собственных значений найдем собственные вектора
-x₁+3x₂=0
x₁=1 x₂=1/3
-3x₁+4x₂=0
x₁=1 x₂=3/4
ответ: 13/12
4) x₁²+4x₁x₂+4x₁x₃+29x₂²+38x₂x₃+17x₃²=(x₁+2x₂+2x₃)²+(5x₂+3x₃)²+4x₃²=a₁²+a₂²+4a³₂
ответ: 6
у= - 3х+1
1) х=4
у= -3*4+1
у= - 11
2) у= - 5
3х=1-у
х=(1-у)/3
х=(1-(-5))/3
х=2
3) А( -2; 7)
х= -2, у=7
7= - 3*(-2)+1
7=6+1
7=7
Точка принадлежит графику у= -3х+1.