Пусть х²+у²=к, ху=р, тогда к/р=34/15
к=34, подставим 34 вместо к в подстановку к/р=34/15, получим р=15
значит, ху=15, х²+у²=34, из первого уравнения у=15/х подставим во второе х²+у²=34, получим х²+(15/х)²=34, решим биквадратное уравнение.
х≠0, х⁴-34х²+225=0. Замена в=х², тогда в²-34в+225=0, по теореме, обратной теореме Виета, в₁=25, в₂=9, оба корня неотрицательные, поэтому, возвращаемся к замене в₁=х², х²=25, получим х₁=5; х₂=-5; если же в₂=9, то х²=9 и х₃=-3; х₄=3, соответственно ху=15, у₁=15/5=3, у₂=15/(-5)=-3; у₃=15/(-3)=-5; у₄=15/3=5
Искомые решения системы соберем в точки. (5;3);(-5;-3);(-3;-5);(3;5)
ответ (5;3);(-5;-3);(-3;-5);(3;5)
Производная заданной функции f(x)=x³ + 3x² - 45x - 2 равна:
y' = 3x² + 6x -45 = 3(x² + 2x - 15).
Приравниваем нулю: x² + 2x - 15 = 0. Д = 4 + 4*15 = 64.
х1 = (-2 + 8)/2 = 3, х2 = (-2-8)/2 = -5. Это критические точки.
Находим знаки производной на промежутках.
х = -6 -5 0 3 4
y' = 99 0 -45 0 27
Как видим, в точке х = -5 максимум (локальный), а в точке х = 3 минимум (за пределами заданного промежутка).
Теперь находим значения функции в критических точках и на границах заданного промежутка.
х = -6 -5 0
у = 160 173 -2 .
максимум функции у = 173 в точке х = -5, минимум у = -2 при х = 0.