Дана функция y = x² + 2 + 6x
Перепишем ее в более удобном виде:
y = x² + 6x + 2
1. Для квадратного уравнения воспользуемся шаблоном:
ax² + bx + c = 0
Найдем коэффициенты:
a = 1;
b = 6;
c = 2;
2. Определим вершины по заданной формуле:
Подставим значения, найденные в пункте:
Подставим в изначальную формулу и найдём координату y вершины:
Запишем полученные данные
(-3; -7);
3.
Подставим значения в формулу:
4. (График в прикрепленном файле)
5. Подставим значения:
Перенесем "-3":
Решим квадратное уравнение:
6. По графику функции видно, что наибольшее значение на этом значении при x = 0, а наименьшее это вершина:
7. С обозначения параболы выплывает, что участок возрастания это все после вершины, а участок убывания до. Тогда:
Возрастания : (-3; +∞)
Убывания: (-∞; -3)
Пусть км/ч - собственная скорость лодки в стоячей воде, тогда
км/ч - скорость движения лодки против течения реки;
км/ч - скорость движения лодки по течению реки.
ч - время движения лодки по течению
ч - время движения лодки против течения
По условию на весь путь затрачен 1 час.
Уравнение:
(ОДЗ:
)
< 0 не удовлетворяет ОДЗ.
Если 12 км/ч - собственная скорость лодки в стоячей воде, тогда
12+3 = 15 км/ч - скорость движения лодки по течению реки.
ответ: 15 км/ч
а) 2(a-3)^2=2(a²-6a+9)=2a²-12a+18;
б) 3(x+y)^2=3(x²+2xy+y²)=3x²+6xy+3y²
в) -5(1-2c)^2=-5(1-4c+4c²)=-5+20c-20c²=20c-20c²-5
г) -4(3m+n)^2=4(9m²+6mn+n²)=36m²+24mn+4n²
д) 0,1(a+5)^2=0,1(a²+10a+25)=0,1a²+a+2,5
e) -1/2(2u-v)=-u+1/2v=1/2v-u