Функция задана уравнением y=-2x^2-5x+6 a) в какой точке график данной функции пересекает ось оy? b) найдите точки пересечения графика функции с осью ох. c) запишите уравнение оси симметрии графика данной функции. d) постройте график функции.
Условия определения логарифмической функции: 1) - логарифмируемое выражение должно быть положительным, 2) - знаменатель дроби не должен быть равен 0.
1) Чтобы логарифмируемое выражение было положительным, надо, чтобы числитель и знаменатель были одновременно или положительными или отрицательными: 2х + 1 >0 x > -1/2 x - 1 > 0 x > 1 Первое решение х > 1
2х + 1 <0 x < -1/2 x - 1< 0 x < 1 Второе решение х < - 1/2
2) Чтобы знаменатель дроби не был равен 0: х - 1 ≠ 0 х ≠ 1.
Квадрат любого числа при делении на 8 может иметь только остаток 0, 1 или 4. Действительно, если n=2k+1, то n²=(2k+1)²=4k(k+1)+1. Произведение k(k+1) всегда делится на 2, поэтому остаток от деления квадрата нечетного числа на 8 всегда равен 1. Если n=2(2k+1), то остаток от деления n² на 8 равен 4, и если n=4k, то n² делится на 8. Итак, Множество возможных остатков от деления х²+y²+z² на 8 образовано остатками от деления на 8 всевозможных сумм трех чисел из множества {0,1,4}, т.е. множество остатков левой части равно {0,1,4,3,6}. С другой стороны, 2015=8*251+7, т.е. остаток 7, но 7∉{0,1,4,3,6}, поэтому решений нет.
1) - логарифмируемое выражение должно быть положительным,
2) - знаменатель дроби не должен быть равен 0.
1) Чтобы логарифмируемое выражение было положительным, надо, чтобы числитель и знаменатель были одновременно или положительными или отрицательными:
2х + 1 >0 x > -1/2
x - 1 > 0 x > 1 Первое решение х > 1
2х + 1 <0 x < -1/2
x - 1< 0 x < 1 Второе решение х < - 1/2
2) Чтобы знаменатель дроби не был равен 0: х - 1 ≠ 0 х ≠ 1.
ответ: -1/2 > x > 1