Утверждение НЕВЕРНО: не при всех рациональных p, k, n все корни этого уравнения - рациональные числа.
Случай 1. p + k + n = 0 -2(p + k) x + (p + k - n) = 0 Случай 1а. p + k ≠ 0 x = (p + k - n)/(2 (p + k)) - рациональное цисло Случай 1б. p + k = 0 (тогда автоматически n = 0) и решение уравнения - все ВЕЩЕСТВЕННЫЕ числа, а не только рациональные.
Случай 2. p + k + n ≠ 0 Обычное квадратное уравнение. Тут корни проще просто выписать явно. D/4 = (p + k)^2 - (p + k + n)(p + k - n) = (p + k)^2 - ((p + k)^2 - n^2) = n^2 x = (p + k +- n)/(p + k + n) - рациональное число
ответ:Пусть A1 — центр вписанной окружности ∆ SBC, B1 — центр вписанной окружности ∆ SAC, AA1 пересекается с A, A1, B1, B лежат в одной плоскости, значит прямые AB1 и BA1 пересекаются на ребре SC. Пусть точка пересечения этих прямых — p. Так как Ap и Bp — биссектрисы углов A и B, то . Но тогда AC • BS = BC • AS, отсюда , следовательно биссектрисы углов S в ∆ ASB и C в ∆ ACB пересекаются на ребре AB, т.е. точки S, C и центры вписанных окружностей ∆ ASB и ∆ ACB лежат в одной плоскости. Отсюда следует, что отрезки, соединяющие вершины S и C с центрами вписанных окружностей противолежащих граней, пересекаются.