Объяснение: 4. (sin(β-π)×sin(2π-β)×cos(β-2π))/
/(sin(π/2 -β)×ctg(π-β)×ctg(β+ 3π/2)) =
=(sin(-(π-β))×sin(-β+2π)×cosβ)/(cosβ×(-ctgβ)×(-tgβ))=
=(-sinβ×(-sinβ)×cosβ)/(cosβ×ctgβ×tgβ)=(sin²β×cosβ)/(cosβ×1) =sin²β ;
5.
1+sinx×cosx×tgx = 1+ (sinx×cosx×sinx)/cosx= 1+ sin²x =1 + sin²(π/3)=
=1+(√3/2)² = 1+ 3/4 = (4+3)/4 = 7/4.
Здесь sin(π/3) = √3/2.
6. tgα=sinα/cosα , cosα=4/5,
Найдем sinα: sin²α= 1 - cos²α = 1 - (4/5)² = 1- (16/25) = (25-16)/25 =
= 9/25;
sinα = - √(9/25) = -3/5; sinα отрицательный потому что (3π/2)<α<2π ;
tgα= sinα/cosα = -(3/5)/(4/5) = -(3×5)/(5×4) = - 3/4.
Знайти координати вектора AB, якщо A(1; 4), B(3; 1).
Розв'язок: AB = {3 - 1; 1 - 4} = {2; -3}.
Приклад 2. Знайти координати точки B вектора AB = {5; 1}, якщо координати точки A(3; -4).
Розв'язок:
ABx = Bx - Ax => Bx = ABx + Ax => Bx = 5 + 3 = 8
ABy = By - Ay => By = ABy + Ay => By = 1 + (-4) = -3
Відповідь: B(8; -3).
Приклад 3. Знайти координати точки A вектора AB = {5; 1}, якщо координати точки B(3; -4).
Розв'язок:
ABx = Bx - Ax => Ax = Bx - ABx => Ax = 3 - 5 = -2
ABy = By - Ay => Ay = By - ABy => Ay = -4 - 1 = -5
Відповідь: A(-2; -5).